Clinical, morphological and molecular markers in the formation of prognosis in patients with cervical cancer

Literature review

Authors

DOI:

https://doi.org/10.18370/2309-4117.2025.81.43-58

Keywords:

cervical cancer, cancer prognosis factors, cancer markers

Abstract

Cervical cancer (CC) remains one of the leading causes of cancer mortality among women in the world, despite significant progress in prevention, screening and
treatment. Due to risk factors associated with the development of CC (smoking, early onset of sexual activity, sexually transmitted infections, number of sexual partners, oral contraceptive use, and immunosuppression), this disease is characterized by an early asymptomatic course. Despite the current methods of treatment of CC (surgical, radiological, chemotherapeutic, as well as the introduction of immunotherapy and targeted drugs in recent years), the prognosis for CC remains unfavorable. The choice of the correct treatment regimen depending on the prognostic and predictive factors of the course of CC is the most important stage. Classical clinicopathological prognostic factors do not sufficiently explain the variability of the course of the disease in patients with similar tumor characteristics, especially at intermediate risk.
This review analyzes both known factors of prognosis of CC (stage of the disease, depth of stromal invasion, lymphovascular invasion, lymph node involvement, spread to the parametrium), and new markers, the role of which is actively studied: perineural invasion, tumor-free distance. Current data on known and promising prognostic biomarkers are summarized: the presence of human papillomavirus, viral load, proteins p16, p53, Ki-67, markers of hypoxia and angiogenesis HIF-1α, VEGF, serum antigens SCC Ag, CYFRA 21-1, hematological indices of systemic inflammation (NLR, PLR, PIV) and components of the tumor microenvironment, such as tumor-infiltrating lymphocytes
(TILs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAF), programmed death ligand 1 (PD-L1). The role of the new biological markers microRNAs is associated with the development of many malignant neoplasms, in particular CC.
The integration of these markers into clinical practice significantly increases the accuracy of predicting the course of CC, allows for a better assessment of the risk of recurrence and potential response to therapy, and also contributes to the individualization of treatment tactics. The presented review emphasizes the need for further multicenter studies to standardize and implement new prognostic markers into clinical practice.

Author Biographies

I.E. Yezhova, Danylo Halytskyi Lviv National Medical University; Municipal Non-Profit Enterprise of the Lviv Regional Council “Lviv Oncological Regional Treatment and Diagnostic”, Lviv

postgraduate student, Department of Oncology and Radiology;
gynecologist, oncologist

N.A. Volodko, Danylo Halytskyi Lviv National Medical University, Lviv

MD, professor, head of the Department of Oncology and Radiology

References

  1. Bray F, Laversanne M, yuna Sung H, et al.“Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-63. DOI: 10.3322/caac.21834.
  2. Cancer Genome Atlas Research Network, Albert Einstein College of Medicine; Analytical Biological Services, et al. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017 Mar 16;543(7645):378-384. DOI: 10.1038/nature21386
  3. Wright JD, Matsuo K, Huang Y, et al. Prognostic Performance of the 2018 International Federation of Gynecology and Obstetrics Cervical Cancer Staging Guidelines. Obstet Gynecol. 2019 Jul;134(1):49-57. DOI: 10.1097/AOG.0000000000003311
  4. Board WC. o.T.E., WHO classification of tumours: female genital tumours[M]. Lyon (France): IARC Publications, 2020: 1-632.
  5. Guimaraes YM, Godoy LR, Longatto-Filho A, Reis RD. Management of Early-Stage Cervical Cancer: A Literature Review. Cancers (Basel). 2022 Jan 24;14(3):575. DOI: 10.3390/cancers14030575
  6. Gennigens C, Cuypere MD, Hermesse J, et al. Optimal treatment in locally advanced cervical cancer. Expert Rev Anticancer Ther. 2021 Jun;21(6):657-671. DOI: 10.1080/14737140.2021.1879646
  7. Мa GF, Lin G-L, Wanget S-T, et al. Prediction of recurrence-related factors for patients with early-stage cervical cancer following radical hysterectomy and adjuvant radiotherapy. BMC Womens Health. 2024 Jan 31;24(1):81 DOI: 10.1186/s12905-023-02853-8
  8. Sedlis A, Bundy BN, Rotman MZ, et al. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: A Gynecologic Oncology Group Study. Gynecol Oncol. 1999 May;73(2):177-83 DOI: 10.1006/gyno.1999.5387
  9. Peters WA 3rd, Liu PY, Barrett RJ 2rd, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol. 2000 Apr;18(8):1606-13. DOI:10.1200/JCO.2000.18.8.1606
  10. George IA, Chauhan R, Dhawale RE, et al. Insights into therapy resistance in cervical cancer. Advances in Cancer Biology-Metastasis. 2022;6:100074. DOI: 10.1016/j.adcanc.2022.100074
  11. Chen H-H, Meng W-Y, Li R-Z, et al. Potential prognostic factors in progression-free survival for patients with cervical cancer. BMC Cancer. 2021 May 10;21(1):531. DOI: 10.1186/s12885-021-08243-3
  12. Pinto PJJ, Chen MJ, Santos Neto E, et al. Prognostic factors in locally advanced cervical cancer with pelvic lymph node metastasis. Int J Gynecol Cancer. 2022 Mar;32(3):239-245. DOI: 10.1136/ijgc-2021-003140
  13. Santoro A, Inzani F, Angelico G, et al. Recent Advances in Cervical Cancer Management: A Review on Novel Prognostic Factors in Primary and Recurrent Tumors. Cancers (Basel). 2023 Feb 10;15(4):1137. DOI:10.3390/cancers15041137
  14. Fontecha N, Basaras M, Hernáez Set al. Assessment of human papillomavirus E6/E7 oncogene expression as cervical disease biomarker. BMC Cancer. 2016 Nov 5;16(1):852. DOI:10.1186/s12885-016-2885-x
  15. Sammarco ML, Tamburro M, Pulliero A, et al. Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health. Microrna. 2020;9(3):174-186. DOI: 10.2174/2211536608666191026115045
  16. Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol. 2014 Jun:26:13-21. DOI: 10.1016/j.semcancer.2013.11.002
  17. Hammer A, Rositch A, Qeadan F, et al. Age-specific prevalence of HPV16/18 genotypes in cervical cancer: A systematic review and meta-analysis. Int J Cancer. 2016 Jun 15;138(12):2795-803. DOI: 10.1002/ijc.29959
  18. Kusakabe M, Taguchi A, Sone K, et al. Carcinogenesis and management of human papillomavirus-associated cervical cancer. Int J Clin Oncol. 2023 Aug;28(8):965-974. DOI: 10.1007/s10147-023-02337-7
  19. Park KJ, Selinger CI, Alvarado-Cabrero I, Duggan MA. Dataset for the Reporting of Carcinoma of the Cervix: Recommendations From the International Collaboration on Cancer Reporting (ICCR). Int J Gynecol Pathol. 2022;41(1):S64-S89. DOI: 10.1097/PGP.0000000000000909
  20. Höhn AK, Brambs CE, Hiller GGR, et al. 2020 WHO Classification of Female Genital Tumors. Geburtshilfe Frauenheilkd. 2021 Oct;81(10):1145-53. DOI: 10.1055/a-1545-4279
  21. Kang S, Wu J, Li J, et al. Prognostic Significance of Clinicopathological Factors Influencing Overall Survival and Event-Free Survival of Patients with Cervical Cancer: A Systematic Review and Meta-Analysis. Med Sci Monit. 2022 Mar 9;28:e934588. DOI: 10.12659/MSM.934588
  22. Silverberg SG, Ioffe OB. Pathology of cervical cancer. Cancer J. 2003 Sep-Oct;9(5):335-47. DOI: 10.1097/00130404-200309000-00003.
  23. Silva DC, Gonçalves AK, Cobucci RN, et al. Immunohistochemical expression of p16, Ki-67 and p53 in cervical lesions - A systematic review. Pathol Res Pract. 2017 Jul;213(7):723-729. DOI: 10.1016/j.prp.2017.03.003
  24. Meng Y, Chu T, Lin S, et al. Clinicopathological characteristics and prognosis of cervical cancer with different histological types: A population-based cohort study. Gynecol Oncol. 2021 Dec;163(3):545-551. DOI: 10.1016/j.ygyno.2021.10.007
  25. Ronsini C, Anchora LP, Restaino S, et al. The role of semiquantitative evaluation of lympho-vascular space invasion in early stage cervical cancer patients. Gynecol Oncol. 2021 Aug;162(2):299-307. DOI: 10.1016/j.ygyno.2021.06.002
  26. Liebig C, Ayala G, Wilks JA, et al. Perineural invasion in cancer: a review of the literature. Cancer. 2009 Aug 1;115(15):3379-91. DOI: 10.1002/cncr.24396
  27. Wan T, Tu H, Liu L, et al. Perineural Invasion Should Be Regarded as an Intermediate-Risk Factor for Recurrence in Surgically Treated Cervical Cancer: A Propensity Score Matching Study. Dis Markers. 2021 Aug 3;2021:1375123 DOI: 10.1155/2021/1375123
  28. Chen X, Duan H, Zhao H, et al. Perineural invasion in cervical cancer: A multicenter retrospective study. Eur J Surg Oncol. 2024 Jun;50(6):108313. DOI: 10.1016/j.ejso.2024.108313
  29. Zannoni GF, Travaglino A, Raffone A, et al. Depth of Stromal Invasion as the Most Prognostically Relevant Regression System in Locally Advanced Cervical Cancer after Neoadjuvant Treatment: A Systematic Review and Meta-Analysis Grading. Diagnostics (Basel). 2021 Sep 26;11(10):1772. DOI: 10.3390/diagnostics11101772
  30. Cibula D, Slama J, Dostálek L, et al. Tumour-free distance: a novel prognostic marker in patients with early-stage cervical cancer treated by primary surgery. Br J Cancer. 2021 Mar;124(6):1121-1129. DOI: 10.1038/s41416-020-01204-w
  31. Bizzarri N, Pedone Anchora L, Zannoni GF, et al. Validation of tumour-free distance as novel prognostic marker in early-stage cervical cancer: a retrospective, single-centre, cohort study. Br J Cancer. 2021 Aug;125(4):561-568. DOI: 10.1038/s41416-021-01384-z
  32. Guani B, Mahiou K, Crestani A, et al. Clinical impact of low-volume lymph node metastases in early-stage cervical cancer: A comprehensive meta-analysis. Gynecol Oncol. 2022 Feb;164(2):446-454. DOI: 10.1016/j.ygyno.2021.12.015
  33. Hishinuma E, Shimada M, Matsukawa N, et al. Identification of predictive biomarkers for diagnosis and radiation sensitivity of uterine cervical cancer using wide-targeted metabolomics. J Obstet Gynaecol Res. 2023 Aug;49(8):2109-2117. DOI: 10.1111/jog.15709
  34. Ansari SA, Anshu. Utility of p16INK4a Staining on Cell Blocks Prepared from Residual Liquid-Based Cervicovaginal Material. Acta Cytol. 2025;69(3):248-258. DOI: 10.1159/000544071
  35. Chong L, Zou Z, Xia L, et al. p16 expression and its correlation with the clinical pathological characteristics of patients with cervical cancer: a systematic review and meta-analysis. BMJ Open. 2025 Sep 11;15(9):e102602. DOI: 10.1136/bmjopen-2025-102602
  36. Van Zummeren M, Leeman A, Kremer WW, et al. Three-tiered score for Ki-67 and p16ink4a improves accuracy and reproducibility of grading CIN lesions. J Clin Pathol. 2018 Nov;71(11):981-988. DOI: 10.1136/jclinpath-2018-205271
  37. Zhao L, Sanyal S. p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel). 2022 Jun 27;14(13):3145. DOI: 10.3390/cancers14133145
  38. Huang Y, He Q, Xu K, et al. A new marker based on risk stratification of human papillomavirus DNA and tumor size to predict survival of locally advanced cervical cancer. Int J Gynecol Cancer. 2019 Mar;29(3):459-465. DOI:10.1136/ijgc-2018-000095).
  39. Zuo J, Huang Y, An J, et al. Nomograms based on HPV load for predicting survival in cervical squamous cell carcinoma: An observational study with a long-term follow-up. Chin J Cancer Res. 2019 Apr;31(2):389-399. DOI: 10.21147/j.issn.1000-9604.2019.02.13
  40. Cao M, Wang Y, Wang D, et al. Increased High-Risk Human Papillomavirus Viral Load Is Associated With Immunosuppressed Microenvironment and Predicts a Worse Long-Term Survival in Cervical Cancer Patients. Am J Clin Pathol. 2020 Mar 9;153(4):502-512. DOI: 10.1093/ajcp/aqz186
  41. Zhou C, Tuong ZK, Frazer IH.. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Front Oncol. 2019 Aug 2;9:682. DOI: 10.3389/fonc.2019.00682
  42. Rashid M, Zadeh LR, Baradaran B, et al. Up-down regulation of HIF-1α in cancer progression. Gene. 2021 Sep 25;798:145796. DOI: 10.1016/j.gene.2021.145796
  43. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019 Mar 7;176(6):1248-1264. DOI: 10.1016/j.cell.2019.01.021
  44. Zhu P, Ou Y, Dong Y, et al. Expression of VEGF and HIF-1α in locally advanced cervical cancer: potential biomarkers for predicting preoperative radiochemotherapy sensitivity and prognosis. Onco Targets Ther. 2016 May 23;9:3031-7. DOI: 10.2147/OTT.S104142
  45. Holub K, Biete А. Impact of systemic inflammation biomarkers on the survival outcomes of cervical cancer patients. Clin Transl Oncol. 2019 Jul;21(7):836–44. DOI: 10.1007/s12094-018-1991-4
  46. Elmali A, Guler OC, Demirhan B, et al. Long-term analysis of hematological parameters as predictors of recurrence patterns and treatment outcomes in cervical cancer patients undergoing definitive chemoradiotherapy. Strahlenther Onkol. 2024 Nov;200(11):949–7. DOI: 10.1007/s00066-024-02278-8
  47. Lizano M, Carrillo-García A, De La Cruz-Hernández E, et al. Promising predictive molecular biomarkers for cervical cancer (Review). Int J Mol Med. 2024 Jun;53(6):50. DOI: 10.3892/ijmm.2024.5374
  48. Singh N, Baby D, Rajguru JP, et al. Inflammation and cancer. Ann Afr Med. 2019 Jul-Sep;18(3):121–6. DOI: 10.4103/aam.aam_56_18
  49. Gao Y, Guo W, Cai S, et al. Systemic immune-inflammation index (SII) is useful to predict survival outcomes in patients with surgically resected esophageal squamous cell carcinoma. J Cancer. 2019 Jun 2;10(14):3188–96. DOI: 10.7150/jca.30281
  50. Zou P, Yang E, Li Z. Neutrophil-to-lymphocyte ratio is an independent predictor for survival outcomes in cervical cancer: a systematic review and meta-analysis. Sci Rep. 2020 Dec 14;10(1):21917. DOI: 10.1038/s41598-020-79071-x
  51. Guven DC, Sahin TK, Erul E, et al. The association between the pan-immune-inflammation value and cancer prognosis: A systematic review and meta-analysis. Cancers (Basel). 2022 May 27;14(11):2675 DOI: 10.3390/cancers14112675
  52. Yan S, Gong X, Liu R, Jia X. Prognostic significance of systemic pan-immune-inflammation value in locally advanced cervical cancer. Front Oncol. 2024 Oct 28;14:1492251. DOI: 10.3389/fonc.2024.1492251
  53. Hong R, Luo L, Xu X, et al. The treatment response evaluation through the combination of contrast-enhanced ultrasound and squamous cell carcinoma antigen in cervical cancer Quant Imaging Med Surg. 2024 Oct 1;14(10):7587–99 DOI: 10.21037/qims-24-132
  54. Xu D, Wang D, Wang S, et al. Correlation Between Squamous Cell Carcinoma Antigen Level and the Clinicopathological Features of Early-Stage Cervical Squamous Cell Carcinoma and the Predictive Value of Squamous Cell Carcinoma Antigen Combined With Computed Tomography Scan for Lymph Node Metastasis. Int J Gynecol Cancer. 2017 Nov;27(9):1935-1942. DOI: 10.1097/IGC.0000000000001112
  55. Tony V, Sathyamurthy A, Ramireddy JK, et al. Role of squamous cell carcinoma antigen in prognostication, monitoring of treatment response, and surveillance of locally advanced cervical carcinoma. J Cancer Res Ther. 2023 Jul-Sep;19(5):1236–1240. DOI: 10.4103/jcrt.jcrt_335_21
  56. Lin C, Xiao N, Chen Q, et al. Prognostic implications of tumor volume reduction during radiotherapy in locally advanced cervical cancer: a risk-stratified analysis. Radiat Oncol. 2025 Mar 31;20(1):47. DOI: 10.1186/s13014-025-02623-w
  57. Piao X, Kong TW, Chang SJ, et al. Pretreatment serum CYFRA 21-1 level correlates significantly with survival of cervical cancer patients: a multivariate analysis of 506 cases. Gynecol Oncol. 2015 Jul;138(1):89–93. DOI: 10.1016/j.ygyno.2015.04.012
  58. Muthusami S, Sabanayagam R, Periyasamy L, et al. A review on the role of epidermal growth factor signaling in the development, progression and treatment of cervical cancer. Int J Biol Macromol. 2022 Jan 1;194:179-187. DOI: 10.1016/j.ijbiomac.2021.11.117
  59. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018 May;24(5):541–50. DOI: 10.1038/s41591-018-0014-x
  60. Lin B, Du L, Li H, et al. Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed Pharmacother. 2020 Dec;132:110873. DOI: 10.1016/j.biopha.2020.110873
  61. Gultekin M, Beduk Esen CS, Ates Ozdemir D, et al. Stromal or intraepithelial tumor-infiltrating lymphocytes: which one has more prognostic significance in cervical cancer? Arch Gynecol Obstet. 2023 Mar;307(3):969-980. DOI: 10.1007/s00404-022-06687-x
  62. Ohno A, Iwata T, Katoh Y, et al. Tumor-infiltrating lymphocytes predict survival outcomes in patients with cervical cancer treated with concurrent chemoradiotherapy. Gynecol Oncol. 2020 Nov;159(2):329-334. DOI: 10.1016/j.ygyno.2020.07.106
  63. Choi Y, Lee D, Kim NY, et al. Role of Tumor-Associated Macrophages in Cervical Cancer: Integrating Classical Perspectives with Recent Technological Advances. Life (Basel). 2024 Mar 27;14(4):443. DOI: 10.3390/life14040443
  64. Liang W, Huang X, Carlos CJJ, Lu X. Research progress of tumor microenvironment and tumor-associated macrophages. Clin Transl Oncol. 2020 Dec;22(12):2141–52. DOI: 10.1007/s12094-020-02367-x
  65. Guo F, Feng YC, Zhao G, et al. Tumor-Associated CD163+ M2 Macrophage Infiltration is Highly Associated with PD-L1 Expression in Cervical Cancer. Cancer Manag Res. 2020 Jul 15;12:5831–43. DOI: 10.2147/CMAR.S257692
  66. Solorzano-Ibarra F, Alejandre-Gonzalez AG, Ortiz-Lazareno PC, et al. Immune checkpoint expression on peripheral cytotoxic lymphocytes in cervical cancer patients: moving beyond the PD-1/PD-L1 axis Clin Exp Immunol. 2021 Apr;204(1):78–95. DOI: 10.1111/cei.13561
  67. Wendel Naumann R, Leath CA 3rd. Advances in immunotherapy for cervical cancer. Curr Opin Oncol. 2020 Sep;32(5):481-487. DOI: 10.1097/CCO.0000000000000663
  68. Galicia-Carmona T, Arango-Bravo EA, Coronel-Martínez JA, et al. Advanced, recurrent, and persistent cervical cancer management: in the era of immunotherapy Front Oncol. 2024 Aug 5;14:1392639. DOI: 10.3389/fonc.2024.1392639.
  69. Wang Y, Xu M, Yao Y, et al. Extracellular cancer-associated fibroblasts: A novel subgroup in the cervical cancer microenvironment that exhibits tumor-promoting roles and prognosis biomarker functions. Oncol Lett. 2024 Feb 22;27(4):167. DOI: 10.3892/ol.2024.14300
  70. Lv B, Wang Y, Ma D, et al. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front Immunol. 2022 Jul 6;13:844142. DOI: 10.3389/fimmu.2022.844142
  71. do Nascimento Medeiros JA, Sarmento ACA, Bernardes-Oliveira E, et al. Evaluation of Exosomal miRNA as Potential Biomarkers in Cervical Cancer. Epigenomes. 2023 Aug 1;7(3):16 DOI: 10.3390/epigenomes7030016
  72. Tornesello ML, Faraonio R, Buonaguro L, et al. The Role of microRNAs, Long Non-coding RNAs, and Circular RNAs in Cervical Cancer. Front Oncol. 2020 Feb 20;10:150. DOI: 10.3389/fonc.2020.00150
  73. Miao J, Regenstein JM, Xu D, et al. The roles of microRNA in human cervical cancer. Arch Biochem Biophys. 2020 Sep 15;690:108480. DOI: 10.1016/j.abb.2020.108480
  74. Pulliero A, Cassatella G, Astuni P,et al. The Role of microRNA Expression and DNA Methylation in HPV-Related Cervical Cancer: A Systematic Review. Int J Mol Sci. 2024 Nov 26;25(23):12714. DOI: 10.3390/ijms252312714
  75. Ramirez PT, Frumovitz M, Pareja R, et al. Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer. N Engl J Med. 2018 Nov 15;379(20):1895–1904. DOI: 10.1056/NEJMoa1806395
  76. Ramirez, Robledo KP, Frumovitz M, et al. LACC Trial: Final Analysis on Overall Survival Comparing Open Versus Minimally Invasive Radical Hysterectomy for Early-Stage Cervical Cancer. J Clin Oncol. 2024 Aug 10;42(23):2741–46. DOI: 10.1200/JCO.23.02335
  77. Chiva L, Zanagnolo V, Querleu D, et al. SUCCOR study: an international European cohort observational study comparing minimally invasive surgery versus open abdominal radical hysterectomy in patients with stage IB1 cervical cancer. Int J Gynecol Cancer. 2020 Sep;30(9):1269. DOI: 10.1136/ijgc-2020-001506
  78. Plante M, Kwon JS, Ferguson S, et al. Simple versus Radical Hysterectomy in Women with Low-Risk Cervical Cancer. N Engl J Med. 2024 Feb 29;390(9):819–29. DOI: 10.1056/NEJMoa2308900
  79. Tatarchuk T, Kalugina L, Antipkin Y, et al. Exploring awareness, attitudes and clinical practices of Ukrainian health professionals regarding human papillomavirus and vaccination: a qualitative study. BMJ 2025, 15(11), e089968. DOI: 10.1136/bmjopen-2024-0899680
  80. Volodko N, Chopyak V, Mazur Y. Barriers to implementing cervical cancer screening in Ukraine: the path forward. Proc Shevchenko Sci Soc Med Sci. 2025 Jun.20;77(1). DOI: 10.25040/ntsh2025.01.01

Published

2025-12-30

How to Cite

Yezhova, I., & Volodko, N. (2025). Clinical, morphological and molecular markers in the formation of prognosis in patients with cervical cancer: Literature review. REPRODUCTIVE ENDOCRINOLOGY, (81), 43–58. https://doi.org/10.18370/2309-4117.2025.81.43-58

Issue

Section

Tumors and pretumoral pathology