Vaginal microbiome and neoplasms of the female reproductive system: a marker or a factor of influence?

Literature review

Authors

DOI:

https://doi.org/10.18370/2309-4117.2024.71.84-92

Keywords:

vaginal microbiome, neoplasms, female reproductive system, precancerous diseases, benign tumors, malignant tumors

Abstract

The study of the human microbiome is one of the most pertinent areas of science and medicine today. The impact of changes in the microbiome is widely discussed in the context of new approaches to the diagnosis, treatment and prevention of many diseases. At the same time, approaches to the management of patients with precancerous and cancerous diseases are changing along with the discovery of new approaches to the management of this category of patients. Scientists all over the world are studying changes in the vaginal microbiome and its role in the female oncological pathology. This article contains the latest information in this direction.

It is known that the vaginal microbiome is predominantly composed of anaerobic and facultative anaerobic flora. Normally, the dominant bacteria in the vagina are lactobacilli. A decrease in the number of lactobacilli facilitates the penetration of pathogenic bacteria and the development of sexually transmitted diseases and precancerous transformations. Studies on the effectiveness of chemotherapy have shown that interventions in the vaginal-cervical microbiome can improve patient response to platinum-based drugs and enhance the therapeutic effect of chemotherapy. Several studies have reported an increased prevalence of Sneаthia spp. in the vaginal microbiome of patients with high-risk human papillomaviruses, cervical intraepithelial neoplasia and invasive cervical carcinoma. Further research is needed on microbiome changes in vaginal and vulvar cancer.

The composition and functions of the vaginal microbiome have been shown to change in women with human papillomavirus. In future studies, it is necessary to conduct analyses in larger samples and more complex populations, taking into account differences in the clinical characteristics of women and focusing on dynamic changes in cancer occurrence, in order to understand the overall development of the disease and the general trend of microbiome changes in gynecological cancer. In addition, close attention should be paid to the development of individualized screening and treatment, and by studying differences in populations, screening and treatment plans can be more precisely formulated and have better results.

Author Biographies

V.V. Artyomenko, Odessa National Medical University, Odesa

MD, professor, Obstetrics and Gynecology Department

N.M. Nastradina, Odesa National Medical University, Odesa

PhD, associate professor, Department of Obstetrics and Gynecology

V.O. Chikanchi, Maternity hospital No. 5, Odesa

Obstetrician-gynecologist

S.R. Iacoban, Polizu Clinical Hospital; Carol Davila University of Medicine and Pharmacy, Bucharest

Postgraduate student, Department of Obstetrics and Gynecology

References

  1. Johnson JS, Spakowicz DJ, Hong BY,et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019 Nov 6;10(1):5029. doi: 10.1038/s41467-019-13036-1.
  2. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019 Jan 10;7(1):14. doi: 10.3390/ microorganisms7010014.
  3. Liang Y, Chen M, Qin L, et al. A meta-analysis of the relationship between vaginal microecology, human papillomavirus infection and cervical intraepithelial neoplasia. Infect Agent Cancer. 2019 Oct 26:14:29. doi: 10.1186/s13027-019-0243-8.
  4. Einstein MH, Levine NF and Nevadunsky NS. Menopause and cancers. Endocrinol Metab Clin North Am. 2015 Sep;44(3):603-17. doi: 10.1016/j.ecl.2015.05.012.
  5. Wu Y, Sun W, Liu H and Zhang D. Age at menopause and risk of developing endometrial cancer: A meta-analysis. Biomed Res Int. 2019 May 29:2019:8584130. doi: 10.1155/2019/8584130
  6. Chee WJY, Chew SY and Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020 Nov 7;19(1):203. doi: 10.1186/s12934-020-01464-4.
  7. Barrientos-Duran A, Fuentes-Lopez A, de Salazar A, et al. Reviewing the composition of vaginal microbiota: Inclusion of nutrition and probiotic factors in the maintenance of eubiosis. Nutrients. 2020 Feb 6;12(2):419. doi: 10.3390/nu12020419
  8. De Gregorio PR, Parolin C, Abruzzo A, et al. Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion. Microb Cell Fact. 2020 Jun 18;19(1):133. doi: 10.1186/ s12934-020-01390-5
  9. Jung H, Ehlers MM, Peters RPH, et al. Growth forms of Gardnerella spp. and Lactobacillus spp. On vaginal cells. Front Cell Infect Microbiol. 2020 Feb 28:10:71. doi: 10.3389/fcimb.2020.00071
  10. Tamarelle J, Thiebaut ACM, de Barbeyrac B, et al. The vaginal microbiota and its association with human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium infections: A systematic review and meta-analysis. Clin Microbiol Infect. 2019 Jan;25(1):35–47. doi: 10.1016/j.cmi.2018.04.019
  11. Witkin SS, Linhares IM. Why do lactobacilli dominate the human vaginal microbiota? BJOG. 2017 Mar;124(4):606–11. doi: 10.1111/1471-0528.14390.
  12. Kyrgiou M, Mitra A, Moscicki AB. Does the vaginal microbiota play a role in the development of cervical cancer? Transl Res. 2017 Jan:179:168–82. doi: 10.1016/j.trsl.2016.07.004
  13. Ilhan ZE, Laniewski P, Thomas N, et al. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine. 2019 Jun:44:675–90. doi: 10.1016/j.ebiom.2019.04.028.
  14. Vornhagen J, Armistead B, Santana-Ufret V, et al. Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection. J Clin Invest. 2018 May 1;128(5):1985–99. doi: 10.1172/JCI97043.
  15. Scillato M, Spitale A, Mongelli G, et al. Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. Microbiologyopen. 2021 Feb;10(2):e1173. doi: 10.1002/mbo3.1173
  16. Chen Y, Qiu X, Wang W, et al. Human papillomavirus infection and cervical intraepithelial neoplasia progression are associated with increased vaginal microbiome diversity in a Chinese cohort. BMC Infect Dis. 2020 Aug 26;20(1):629. doi: 10.1186/s12879-020-05324-9.
  17. Mitra A, MacIntyre DA, Marchesi JR, et al. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome. 2016 Nov 1;4(1):58. doi: 10.1186/s40168-016-0203-0.
  18. Tsementzi D, Meador R, Eng T, et al. Changes in the Vaginal Microbiome and Associated Toxicities Following Radiation Therapy for Gynecologic Cancers. Front Cell Infect Microbiol. 2021 Oct 27:11:680038. doi: 10.3389/fcimb.2021.680038
  19. Wang KD, Xu DJ, Wang BY, et al. Inhibitory effect of vaginal Lactobacillus supernatants on cervical cancer cells. Probiotics Antimicrob Proteins. 2018 Jun;10(2):236–42. doi: 10.1007/s12602-017-9339-x
  20. Sungur T, Aslim B, Karaaslan C, Aktas B. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe. 2017 Oct:47:137–44. doi: 10.1016/j. anaerobe.2017.05.013
  21. Palma E, Recine N, Domenici L, et al. Long-term Lactobacillus rhamnosus BMX 54 application to restore a balanced vaginal ecosystem: A promising solution against HPV-infection. BMC Infect Dis. 2018 Jan 5;18(1):13. doi: 10.1186/s12879-017-2938-z
  22. Gosmann C, Anahtar MN, Handley SA, et al/ Lactobacillus-Deficient cervicovaginal bacterial communities are associated with increased HIV Acquisition in Young South African Women. Immunity. 2017 Jan 17;46(1):29–37. doi: 10.1016/j.immuni.2016.12.013.
  23. Wei ZT, Chen HL, Wang CF, et al. Depiction of vaginal microbiota in women with high-risk human papillomavirus infection. Front Public Health. 2021 Jan 8:8:587298. doi: 10.3389/fpubh.2020.587298
  24. Uttley L, Whiteman BL, Woods HB, et al. Building the evidence base of blood-based biomarkers for early detection of cancer: A rapid systematic mapping review. EBioMedicine. 2016 Aug:10:164–73. doi: 10.1016/j.ebiom.2016.07.004.
  25. Papageorgis P, Ozturk S, Lambert AW, et al. Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis. Breast Cancer Res. 2015 Jul 25;17(1):98. doi: 10.1186/s13058-015-0607-y
  26. Łaniewski P, Cui H, Roe DJ, et al. Features of the cervicovaginal microenvironment drive cancer biomarker signatures in patients across cervical carcinogenesis. Sci Rep. 2019 May 14;9(1):7333. doi: 10.1038/ s41598-019-43849-5.
  27. de Seta F, Campisciano G, Zanotta N, et al. The vaginal community state types microbiome-immune network as key factor for bacterial vaginosis and aerobic vaginitis. Front Microbiol. 2019 Oct 30:10:2451. doi: 10.3389/ fmicb.2019.02451.
  28. de Vrese M, Laue C, Papazova E, et al. Impact of oral administration of four Lactobacillus strains on Nugent score-systematic review and meta-analysis. Benef Microbes. 2019 May 28;10(5):483–96. doi: 10.3920/ BM2018.0129.
  29. Lev-Sagie A, Goldman-Wohl D, Cohen Y, et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med. 2019 Oct;25(10):1500–04. doi: 10.1038/s41591-019-0600-6.
  30. Wu S, Ding X, Kong Y, et al. The feature of cervical microbiota associated with the progression of cervical cancer among reproductive females. Gynecol Oncol. 2021 Nov;163(2):348–57. doi: 10.1016/j.ygyno.2021.08.016.
  31. Łaniewski P, Barnes D, Goulder A, et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci Rep. 2018 May 15;8(1):7593. doi: 10.1038/s41598-018-25879-7
  32. Mitra A, MacIntyre DA, Paraskevaidi M, et al. The vaginal microbiota and innate immunity after local excisional treatment for cervical intraepithelial neoplasia. Genome Med. 2021 Nov 4;13(1):176. doi: 10.1186/ s13073-021-00977-w
  33. Zhang H, Lu J, Lu Y, et al. Cervical microbiome is altered in cervical intraepithelial neoplasia after loop electrosurgical excision procedure in China. Sci Rep. 2018 Mar 21;8(1):4923. doi: 10.1038/ s41598-018-23389-0
  34. Wang Z, Xiao R, Huang J, et al. The diversity of vaginal microbiota predicts neoadjuvant chemotherapy responsiveness in locally advanced cervical cancer. Microb Ecol. 2022 Jul;84(1):302–13. doi: 10.1007/ s00248-021-01800-0.
  35. Mao X, Chen H, Peng X, et al. Dysbiosis of vaginal and cervical microbiome is associated with uterine fibroids. Front Cell Infect Microbiol. 2023 Sep 6:13:1196823. DOI: 10.3389/fcimb.2023.1196823
  36. Tian Z, Zhao M, Sui X, et al. Associations between vaginal microbiota and endometrial polypoid lesions in women of reproductive age: a cross-sectional study. Reprod Biomed Online. 2023 Oct 11;48(2):103602. DOI: 10.1016/j.rbmo.2023.103602
  37. Boyko N, Golubnitschaja O. Microbiome in 3P Medicine Strategies: The First Exploitation. Cham: Springer; 2023.424 p.
  38. Pagan L, Ederveen RAM, Huisman BW, et al. The Human Vulvar Microbiome: A Systematic Review. Microorganisms. 2021 Dec 12;9(12):2568. doi: 10.3390/ microorganisms9122568.
  39. Nitecki R, Feltmate CM. Human papillomavirus and nonhuman papillomavirus pathways to vulvar squamous cell carcinoma: A review. Curr. Probl. Cancer. 2018;42:476–85. doi: 10.1016/j. currproblcancer.2018.06.008
  40. Thuijs NB, van Beurden M, Bruggink AH, et al. Vulvar intraepithelial neoplasia: Incidence and long-term risk of vulvar squamous cell carcinoma. Int. J. Cancer. 2021;148:90–8. doi: 10.1002/ijc.33198
  41. Mullen MM, Merfeld EC, Palisoul ML, et al. Wound Complication Rates After Vulvar Excisions for Premalignant Lesions. Obstet. Gynecol. 2019;133:658–65. doi: 10.1097/AOG.0000000000003185
  42. Norenhag J, Du J, Olovsson M, et al. The vaginal microbiota, human papillomavirus and cervical dysplasia: A systematic review and network meta-analysis. BJOG. 2020;127:171–80. doi: 10.1111/1471-0528.15854.
  43. Yang Q, Wang Y, Wei X, et al. The alterations of vaginal microbiome in HPV16 infection as identified by shotgun metagenomic sequencing. Front Cell Infect Microbiol. 2020 Jun 23:10:286. doi: 10.3389/fcimb.2020.00286.
  44. Zhang Z, Li T, Zhang D, et al. Distinction between vaginal and cervical microbiota in high-risk human papilloma virus-infected women in China. BMC Microbiol. 2021 Mar 25;21(1):90. doi: 10.1186/s12866-021-02152-y.
  45. Egawa N, Doorbar J. The low-risk papillomaviruses. Virus Res. 2017 Mar 2:231:119– 27. doi: 10.1016/j.virusres.2016.12.017
  46. Vanska S, Luostarinen T, Lagheden C, et al. Differing age-specific cervical cancer incidence between different types of human papillomavirus: Implications for predicting the impact of elimination programs. Am J Epidemiol. 2021. Apr 6;190:506–14. doi: 10.1093/aje/kwaa121
  47. Huang X, Li C, Li F, et al. Cervicovaginal microbiota composition correlates with the acquisition of high-risk human papillomavirus types. Int J Cancer. 2018. Aug 1;143:621–634. doi: 10.1002/ijc.31342. Epub 2018 Mar 9
  48. di Paola M, Sani C, Clemente AM, et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection. Sci Rep. 2017 Aug 31;7(1):10200. doi: 10.1038/ s41598-017-09842-6
  49. Zhou B, Sun C, Huang J, et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci. Rep. 2019 Feb 8;9(1):1691. doi: 10.1038/s41598-018-38031-2
  50. Banerjee S, Tian T, Wei Z, et al. The ovarian cancer oncobiome. Oncotarget 2017 May 30;8, 36225–45. doi: 10.18632/oncotarget.16717
  51. Coburn SB, Bray F, Sherman ME, Trabert B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer. 2017 Jun 1;140(11):2451–60. doi: 10.1002/ijc.30676.
  52. Nene NR, Reisel D, Leimbach A, et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: A case-control study. Lancet Oncol. 2019 Aug;20:1171–82. 2019. doi: 10.1016/ S1470-2045(19)30340-7
  53. Morikawa A, Kawabata A, Shirahige K, et al. Altered cervicovaginal microbiota in premenopausal ovarian cancer patients. Gene. 2022 Feb 15:811:146083. doi: 10.1016/j. gene.2021.146083
  54. Ely LK, Truong M. The role of opportunistic bilateral salpingectomy vs tubal occlusion or ligation for ovarian cancer prophylaxis. J Minim Invasive Gynecol. 2017 Mar-Apr;24(3):371–8. doi: 10.1016/j. jmig.2017.01.001.
  55. Jacobson D, Moore K, Gunderson C, et al. Shifts in gut and vaginal microbiomes are associated with cancer recurrence time in women with ovarian cancer. PeerJ. 2021 Jun 17:9:e11574. doi: 10.7717/peerj.11574.
  56. Hassan ZK, Hafez MM, Kamel MM, Zekri AR. Human papillomavirus genotypes and methylation of CADM1, PAX1, MAL and ADCYAP1 genes in epithelial ovarian cancer patients. Asian Pac J Cancer Prev. 2017 Jan 1;18(1):169–76. doi: 10.22034/APJCP.2017.18.1.169
  57. Jonsson S, Oda H, Lundin E, et al. Chlamydia trachomatis, Chlamydial heat shock protein 60 and anti-chlamydial antibodies in women with epithelial ovarian tumors. Transl Oncol. 2018 Apr;11(2):546–51. doi: 10.1016/j. tranon.2018.02.008.
  58. Wang Q, Zhao L, Han L, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J Ovarian Res. 2020 Jan 18;13(1):8. doi: 10.1186/s13048-019-0603-4.
  59. Brewster WR, Burkett WC, Ko EM, et al. An evaluation of the microbiota of the upper reproductive tract of women with and without epithelial ovarian cancer. Gynecol Oncol Rep. 2022 Jun 10:42:101017. doi: 10.1016/j.gore.2022.101017.
  60. Mitchell CM, Haick A, Nkwopara E, et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol. 2015 May;212(5):611.e1-9. doi: 10.1016/j.ajog.2014.11.043
  61. Chen C, Song X, Wei W, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017 Oct 17;8(1):875. doi: 10.1038/s41467-017-00901-0
  62. Walther-Antonio MR, Chen J, Multinu F, et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med. 2016 Nov 25;8(1):122. doi: 10.1186/s13073-016-0368-y
  63. Walsh DM, Hokenstad AN, Chen J, et al. Postmenopause as a key factor in the composition of the endometrial cancer microbiome (ECbiome). Sci Rep. 2019 Dec 16;9(1):19213. doi: 10.1038/s41598-019-55720-8
  64. Milde-Langosch K, Becker G, Loning T. Human papillomavirus and c-myc/c-erbB2 in uterine and vulvar lesions. Virchows Arch A Pathol Anat Histopathol. 1991;419(6):479-85. doi: 10.1007/BF01650676
  65. Olesen TB, Svahn MF, Faber MT, et al. Prevalence of human papillomavirus in endometrial cancer: A systematic review and meta-analysis. Gynecol Oncol. 2014 Jul;134(1):206–15. doi: 10.1016/j.ygyno.2014.02.040
  66. Abu-Lubad MA, Jarajreh DA, Helaly GF, et al. Human papillomavirus as an independent risk factor of invasive cervical and endometrial carcinomas in Jordan. J Infect Public Health. 2020 Apr;13(4):613–18. doi: 10.1016/j.jiph.2019.08.017
  67. Jiang XF, Tang QL, Zou Y, et al. Does HBV infection increase risk of endometrial carcinoma? Asian Pac J Cancer Prev. 2014;15(2):713–6. doi: 10.7314/apjcp.2014.15.2.713
  68. Moreno I, Franasiak JM. Endometrial microbiota-new player in town. Fertil. Steril. 2017 Jul;108(1):32–9. doi: 10.1016/j.fertnstert.2017.05.034
  69. Winters AD, Romero R, Gervasi MT, et al. Does the endometrial cavity have a molecular microbial signature? Sci. Rep. 2019 Jul 9;9(1):9905. doi: 10.1038/s41598-019-46173-0.
  70. Tsementzi D, Pena-Gonzalez A, Bai J, et al. Comparison of vaginal microbiota in gynecologic cancer patients pre- and post-radiation therapy and healthy women. Cancer Med. 2020 Jun;9(11):3714–24. doi: 10.1002/cam4.3027
  71. Li C, Gu Y, He Q, et al. Integrated analysis of microbiome and transcriptome data reveals the interplay between commensal bacteria and fibrin degradation in endometrial cancer. Front Cell Infect Microbiol. 2021 Sep 21:11:748558. doi: 10.3389/fcimb.2021.748558
  72. Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 2020 Mar;579(7800):567–74. doi: 10.1038/s41586-020-2095-1
  73. Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020 May 29;368(6494):973–80. doi: 10.1126/science.aay9189
  74. Tzeng A, Sangwan N, Jia M, et al. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. 2021 Apr 16;13(1):60. doi: 10.1186/s13073-021-00874-2
  75. Ma J, Gnanasekar A, Lee A, et al. Influence of intratumor microbiome on clinical outcome and immune processes in prostate cancer. Cancers (Basel). 2020 Sep 5;12(9):2524. doi: 10.3390/cancers12092524
  76. Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018 Apr;8(4):403–16. doi: 10.1158/2159-8290. CD-17-1134
  77. Gnanasekar A, Castaneda G, Iyangar A, et al. The intratumor microbiome predicts prognosis across gender and subtypes in papillary thyroid carcinoma. Comput Struct Biotechnol J. 2021 Apr 9:19:1986–97. doi: 10.1016/j.csbj.2021.03.032
  78. Wang L, Yang J, Su H, et al. Endometrial microbiota from endometrial cancer and paired pericancer tissues in postmenopausal women: Differences and clinical relevance. Menopause. 2022 Oct 1;29(10):1168–75. doi: 10.1097/GME.0000000000002053
  79. Lu W, He F, Lin Z, et al. Dysbiosis of the endometrial microbiota and its association with inflammatory cytokines in endometrial cancer. Int J Cancer. 2021 Apr 1;148(7):1708–16. doi: 10.1002/ijc.33428.
  80. Caselli E, Soffritti I, D’Accolti M, et al. Atopobium vaginae and porphyromonas somerae induce proinflammatory cytokines expression in endometrial cells: A possible implication for endometrial cancer? Cancer Manag Res. 2019 Sep 23:11:8571–5. doi: 10.2147/CMAR.S217362
  81. Han M, Wang N, Han W, et al. Vaginal and tumor microbiomes in gynecological cancer (Review). Oncol Lett. 2023 Mar 3;25(4):153. doi: 10.3892/ol.2023.13739
  82. Del Castillo E, Meier R, Chung M, et al. The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic cancer and noncancer subjects. Cancer Epidemiol Biomarkers Prev. 2019 Feb;28(2):370–83. doi: 10.1158/1055-9965.EPI-18-0542

Published

2024-03-15

How to Cite

Artyomenko, V., Nastradina, N., Chikanchi, V., & Iacoban, S. (2024). Vaginal microbiome and neoplasms of the female reproductive system: a marker or a factor of influence? Literature review. REPRODUCTIVE ENDOCRINOLOGY, (71), 84–92. https://doi.org/10.18370/2309-4117.2024.71.84-92

Issue

Section

Tumors and pretumoral pathology