Probiotic combinations for women. Effectiveness and safety from the points of evidence-based medicine

Literature review

Authors

DOI:

https://doi.org/10.18370/2309-4117.2023.70.54-62

Keywords:

probiotic agent, vaginal dysbiosis, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus rhamnosus, Lactobacillus acidophilus

Abstract

To date, probiotic medicinal products have a significant number of clinical studies, which is the basis for the formation of an evidence base and their inclusion in modern treatment standards. However, ideas about the optimal composition of a probiotic preparation and effective dosage remain problematic issues in modern medicine. Choosing an effective probiotic in gynecological practice is a particularly difficult and important issue.
Objective of the review: to analyze the available clinical studies aimed at identifying strains of beneficial bacteria, their dosage, possible combinations in order to choose the optimal composition of a probiotic agent for the treatment of dysbiosis, including vaginal.
Materials and methods. Modern methods recommended for theoretical analytical research were used: method of analysis, method of synthesis, method of induction. An electronic search was conducted in bibliographic databases, including PubMed, CENTRAL, MEDLINE, Embase, and CINAHL. 58 scientific publications were analyzed. Inclusion criteria were the following keywords: probiotics, optimal dosage, optimal composition, dysbiosis.
Results. The most important probiotic microorganisms for restoring health in women are Lactobacillus acidophilus, L. crispatus, L. jensenii, L. gasseri, L. rhamnosus. Each of these lactobacilli maintains the normal vaginal pH, produces hydrogen peroxide, suppresses growth and prevents the reproduction of obligate anaerobes and opportunistic microorganisms when interacting with the peroxidase of cervical mucus.
The mechanism of action of the above-mentioned probiotic microorganisms was analyzed. It was established that the effective dose of each of the components should not be less than 1-2 billion colony forming units.
Conclusions. The analysis of scientific publications in the bibliographic databases was sufficient to establish that the oral use of probiotics in the treatment of gynecological patients is effective. The optimal components of the probiotic agent, which are effective for the therapy of vaginal dysbiosis, are L. crispatus, L. gasseri, L. jensenii, L. rhamnosus, L. acidophilus.

Author Biographies

N.A. Tsubanova, Andrei Krupynskyi Lviv Medical Academy, Lviv

Doctor of pharmaceutical sciences, professor, Department of Pharmacy

E.S. Dembitska, Andrei Krupynskyi Lviv Medical Academy, Lviv

Assistant, Department of Pharmacy

G.B. Galevich, Andrei Krupynskyi Lviv Medical Academy, Lviv

Assistant, Department of Pharmacy

References

  1. Schaub AC, Schneider E, Vazquez-Castellanos JF, et al. Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial. Transl Psychiatry. 2022 Jun 3;12(1):227. DOI: 10.1038/s41398-022-01977-z.
  2. Kazemi A, Noorbala AA, Azam K, et al. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin Nutr. 2019 Apr;38(2):522–8. DOI: 10.1016/j.clnu.2018.04.010.
  3. Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, et al. Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab. 2019;74(2):115–24. DOI: 10.1159/000496426.
  4. Sniffen JC, McFarland LV, Evans CT, Goldstein EJC. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS One. 2018 Dec 26;13(12):e0209205. DOI: 10.1371/journal.pone.0209205.
  5. Zhang Y, Ding Y, Guo Q. Probiotic Species in the Management of Periodontal Diseases: An Overview. Front Cell Infect Microbiol. 2022 Mar 25;12:806463. DOI: 10.3389/fcimb.2022.806463.
  6. Kim SK, Guevarra RB, Kim YT, et al. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J Microbiol Biotechnol. 2019 Sep 28;29(9):1335-1340. DOI: 10.4014/jmb.1906.06064.
  7. Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, et al. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019 Jun;38(3):1031–5. DOI: 10.1016/j.clnu.2018.05.018.
  8. Suez J, Zmora N, Segal E, Elinav E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019 May;25(5):716–29. DOI: 10.1038/s41591-019-0439-x.
  9. Lalonde R, Strazielle C. Probiotic Influences on Motor Skills: A Review. Curr Neuropharmacol. 2023;21(12): 2481–86. DOI: 10.2174/1570159 X21666230807150523.
  10. Wieërs G, Belkhir L, Enaud R, et al. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol. 2020 Jan 15;9:454. DOI: 10.3389/fcimb.2019.00454.
  11. Ragan MV, Wala SJ, Goodman SD, et al. Next-Generation Probiotic Therapy to Protect the Intestines From Injury. Front Cell Infect Microbiol. 2022 Jun 28;12:863949. DOI: 10.3389/fcimb.2022.863949.
  12. Fusco V, Fanelli F, Chieffi D. Authenticity of probiotic foods and dietary supplements: A pivotal issue to address. Crit Rev Food Sci Nutr. 2022;62(25):6854–71. DOI: 10.1080/10408398.2021.1907300.
  13. Santacroce L, Charitos IA, Bottalico L. A successful history: probiotics and their potential as antimicrobials. Expert Rev Anti Infect Ther. 2019.Aug;17(8):635-645. DOI: 10.1080/14787210.2019.1645597.
  14. Hemmati F, Rezaee MA, Ebrahimzadeh S, et al. Novel Strategies to Combat Bacterial Biofilms. Mol Biotechnol. 2021 Jul;63(7):569–86. DOI: 10.1007/s12033-021-00325-8.
  15. Zhang T, Zhang C, Zhang J, et al. Efficacy of Probiotics for Irritable Bowel Syndrome: A Systematic Review and Network Meta-Analysis. Front Cell Infect Microbiol. 2022 Apr 1;12:859967. DOI: 10.3389/fcimb.2022.859967.
  16. Martín-Peláez S, Cano-Ibáñez N, Pinto-Gallardo M, Amezcua-Prieto C. The Impact of Probiotics, Prebiotics, and Synbiotics during Pregnancy or Lactation on the Intestinal Microbiota of Children Born by Cesarean Section: A Systematic Review. Nutrients. 2022 Jan 14;14(2):341. DOI: 10.3390/nu14020341
  17. Wang HT, Anvari S, Anagnostou K. The Role of Probiotics in Preventing Allergic Disease. Children (Basel). 2019 Feb 5;6(2):24. DOI: 10.3390/children6020024.
  18. Sun Z, Ge X, Qiu B. Vulvovaginal candidiasis and vaginal microflora interaction: Microflora changes and probiotic therapy. Front Cell Infect Microbiol. 2023 Feb 3;13:1123026. DOI: 10.3389/fcimb.2023.1123026.
  19. Saraf VS, Sheikh SA, Ahmad A, et al. Vaginal microbiome: normalcy vs dysbiosis. Arch Microbiol. 2021 Sep;203(7):3793-3802. DOI: 10.1007/s00203-021-02414-3
  20. López-Moreno A, Aguilera M. Vaginal Probiotics for Reproductive Health and Related Dysbiosis: Systematic Review and Meta-Analysis. J Clin Med. 2021 Apr 2;10(7):1461. DOI: 10.3390/jcm10071461.
  21. Cooke G, Watson C, Deckx L, et al. Treatment for recurrent vulvovaginal candidiasis (thrush). Cochrane Database Syst Rev. 2022 Jan 10;1(1):CD009151. DOI: 10.1002/14651858.CD009151.pub2.
  22. Mizgier M, Jarzabek-Bielecka G, Mruczyk K, Kedzia W. The role of diet and probiotics in prevention and treatment of bacterial vaginosis and vulvovaginal candidiasis in adolescent girls and non-pregnant women. Ginekol Pol. 2020;91(7):412–6. DOI: 10.5603/GP.2020.0070.
  23. Chee WY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020 Nov 7;19(1):203. DOI: 10.1186/s12934-020-01464-4.
  24. Sun Z, Ge X, Qiu B, et al. Vulvovaginal candidiasis and vaginal microflora interaction: Microflora changes and probiotic therapy. Front Cell Infect Microbiol. 2023 Feb 3;13:1123026. DOI: 10.3389/fcimb.2023.1123026.
  25. Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob. 2020 Jan 28;19(1):5. DOI: 10.1186/s12941-020-0347-4.
  26. Machado A, Foschi C, Marangoni A. Editorial: Vaginal dysbiosis and biofilms. Front Cell Infect Microbiol. 2022 Aug 9;12:976057. DOI: 10.3389/fcimb.2022.976057.
  27. Bennett PR, Brown RG, MacIntyre DA. Vaginal Microbiome in Preterm Rupture of Membranes. Obstet Gynecol Clin North Am. 2020 Dec;47(4):503–21. DOI: 10.1016/j.ogc.2020.08.001.
  28. van de Wijgert J, Verwijs MC. Lactobacilli-containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis: a systematic review and recommendations for future trial designs. BJOG. 2020 Jan;127(2):287–99. DOI: 10.1111/1471-0528.15870.
  29. Venneri MA, Franceschini E, Sciarra F, et al. Human genital tracts microbiota: dysbiosis crucial for infertility. J Endocrinol Invest. 2022 Jun;45(6):1151–60. DOI: 10.1007/s40618-022-01752-3.
  30. Lepargneur JP. Lactobacillus crispatus as biomarker of the healthy vaginal tract. Ann Biol Clin. 2016 Aug 1;74(4):421–7. English. DOI: 10.1684/abc.2016.1169.
  31. Nardini P, Ñahui Palomino RA, Parolin C, et al. Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study. Sci Rep. 2016 Jun 29;6:29024. DOI: 10.1038/srep29024.
  32. Kawahara T, Shimizu I, Tanaka Y, et al. Lactobacillus crispatus Strain KT-11 S-Layer Protein Inhibits Rotavirus Infection. Front Microbiol. 2022 Feb 22;13:783879. DOI: 10.3389/fmicb.2022.783879.
  33. Yoshida T, Takada K, Komine-Aizawa S, et al. Lactobacillus crispatus promotes invasion of the HTR-8/SVneo trophoblast cell line. Placenta. 2021 Aug;111:7–81. DOI: 10.1016/j.placenta.2021.06.006.
  34. Armstrong E, Hemmerling A, Miller S, et al. Sustained effect of LACTIN-V (Lactobacillus crispatus CTV-05) on genital immunology following standard bacterial vaginosis treatment: results from a randomised, placebo-controlled trial. Lancet Microbe. 2022 Jun;3(6):e435–e442. DOI: 10.1016/S2666-5247(22)00043-X.
  35. Deng T, Shang A, Zheng Y, et al. Log (Lactobacillus crispatus/ Gardnerella vaginalis): a new indicator of diagnosing bacterial vaginosis. Bioengineered. 2022 Feb;13(2):2981–91. DOI: 10.1080/21655979.2022.2027059.
  36. Argentini C, Fontana F, Alessandri G, et al. Evaluation of Modulatory Activities of Lactobacillus crispatus Strains in the Context of the Vaginal Microbiota. Microbiol Spectr. 2022 Apr 27;10(2):e0273321. DOI: 10.1128/spectrum.02733-21.
  37. Nishida K, Sawada D, Kuwano Y, et al. Health Benefits of Lactobacillus gasseri CP2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients. 2019 Aug 10;11(8):1859. DOI: 10.3390/nu11081859.
  38. Kim J, Yun JM, Kim MK, et al. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J Med Food. 2018 May;21(5):454–61. DOI: 10.1089/jmf.2017.3937.
  39. Crovesy L, Ostrowski M, Ferreira DMTP, et al. Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obes (Lond). 2017 Nov;41(11):1607–14. DOI: 10.1038/ijo.2017.161.
  40. Sawada D, Sugawara T, Hirota T, Nakamura Y. Effects of Lactobacillus gasseri CP2305 on Mild Menopausal Symptoms in Middle-Aged Women. Nutrients. 2022 Apr 19;14(9):1695. DOI: 10.3390/nu14091695.
  41. Hamada T, Hisatome I, Wakimizu T, et al. Lactobacillus gasseri PA-3 reduces serum uric acid levels in patients with marginal hyperuricemia. Nucleosides Nucleotides Nucleic Acids. 2022;41(4):361–69. DOI: 10.1080/15257770.2022.2039702.
  42. Ait Abdellah S, Scanzi J, Gal C, et al. Lactobacillus gasseri LA806 Supplementation in Patients with Irritable Bowel Syndrome: A Multicenter Study. J Clin Med. 2022 Dec 15;11(24):7446. DOI: 10.3390/jcm11247446.
  43. Zhang Q, Cheng Q, Cui S, et al. Inhibitory effect of Lactobacillus gasseri CCFM1201 on Gardnerella vaginalis in mice with bacterial vaginosis. Arch Microbiol. 2022 May 11;204(6):315. DOI: 10.1007/s00203-022-02896-9.
  44. Lee S, Jung DH, Park M, et al. The Effect of Lactobacillus gasseri BNR17 on Postmenopausal Symptoms in Ovariectomized Rats. J Microbiol Biotechnol. 2021 Sep 28;31(9):1281–7. DOI: 10.4014/jmb.2105.05032.
  45. He Y, Niu X, Wang B, et al. Evaluation of the Inhibitory Effects of Lactobacillus gasseri and Lactobacillus crispatus on the Adhesion of Seven Common Lower Genital Tract Infection-Causing Pathogens to Vaginal Epithelial Cells. Front Med (Lausanne). 2020 Jun 19;7:284. DOI: 10.3389/fmed.2020.00284.
  46. Putonti C, Shapiro JW, Ene A, et al. Comparative Genomic Study of Lactobacillus jensenii and the Newly Defined Lactobacillus mulieris Species Identifies Species-Specific Functionality. mSphere. 2020 Aug 12;5(4):e00560–20. DOI: 10.1128/mSphere.00560-20.
  47. Fristot E, Bessede T, Camacho Rufino M, et al. An optimized electrotransformation protocol for Lactobacillus jensenii. PLoS One. 2023 Feb 17;18(2):e0280935. DOI: 10.1371/journal.pone.0280935.
  48. Ene A, Putonti C. Draft Genome Assemblies of 4 Lactobacillus jensenii and 3 Lactobacillus mulieris Strains from the Urinary Tract. Microbiol Resour Announc. 2022 May 19;11(5):e0003222. DOI: 10.1128/mra.00032-22.
  49. Spurbeck RR, Arvidson CG. Lactobacillus jensenii surface-associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect Immun. 2010 Jul;78(7):3103–11. DOI: 10.1128/IAI.01200-09.
  50. Morais IMC, Cordeiro AL, Teixeira GS, et al. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. Microb Cell Fact. 2017 Sep 19;16(1):155. DOI: 10.1186/s12934-017-0769-7.
  51. Miller-Ensminger T, Mormando R, Maskeri L, et al. Introducing Lu-1, a Novel Lactobacillus jensenii Phage Abundant in the Urogenital Tract. PLoS One. 2020 Jun 11;15(6):e0234159. DOI: 10.1371/journal.pone.0234159.
  52. Villena J, Kitazawa H. Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus jensenii TL2937. Front Immunol. 2014 Jan 14;4:512. DOI: 10.3389/fimmu.2013.00512.
  53. Shimazu T, Villena J, Tohno M, et al. Immunobiotic Lactobacillus jensenii elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the Toll-like receptor signaling pathway. Infect Immun. 2012 Jan;80(1):276–88. DOI: 10.1128/IAI.05729-11.
  54. Segers ME, Lebeer S. Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microb Cell Fact. 2014 Aug 29;13 Suppl 1(Suppl 1):S7. DOI: 10.1186/1475-2859-13-S1-S7.
  55. Stivala A, Carota G, Fuochi V, Furneri PM. Lactobacillus rhamnosus AD3 as a Promising Alternative for Probiotic Products. Biomolecules. 2021 Jan 13;11(1):94. DOI: 10.3390/biom11010094.
  56. He Y, Na R, Niu X, et al. Lactobacillus rhamnosus and Lactobacillus casei Affect Various Stages of Gardnerella Species Biofilm Formation. Front Cell Infect Microbiol. 2021 Feb 19;11:568178. DOI: 10.3389/fcimb.2021.568178.
  57. Petrova MI, Reid G, Ter Haar JA. Lacticaseibacillus rhamnosus GR-1, a.k.a. Lactobacillus rhamnosus GR-1: Past and Future Perspectives. Trends Microbiol. 2021 Aug;29(8):747–61. DOI: 10.1016/j.tim.2021.03.010.
  58. Gao H, Li X, Chen X, et al. The Functional Roles of Lactobacillus acidophilus in Different Physiological and Pathological Processes. J Microbiol Biotechnol. 2022 Oct 28;32(10):1226–33. DOI: 10.4014/jmb.2205.05041.

Published

2023-12-29

How to Cite

Tsubanova, N., Dembitska, E., & Galevich, G. (2023). Probiotic combinations for women. Effectiveness and safety from the points of evidence-based medicine: Literature review. REPRODUCTIVE ENDOCRINOLOGY, (70), 54–62. https://doi.org/10.18370/2309-4117.2023.70.54-62

Issue

Section

Interdisciplinary problems