Insulin resistance in the ХХІ century: multimodal approach to assessing causes and effective correction

Authors

DOI:

https://doi.org/10.18370/2309-4117.2021.62.97-103

Keywords:

insulin resistance, metabolic syndrome, melatonin, vitamin D, proinsulin, chronorhythms, biorhythms

Abstract

In a broad sense, insulin resistance (IR) is the impairment of the biological response of target tissues to insulin stimulation. IR plays a leading role in the development of metabolic syndrome, the global prevalence of which continues to grow, despite the significant efforts of medical systems. The multicomponent nature of metabolic syndrome implies its complex and heterogeneous pathogenesis, knowledge about which is annually updated with new details as a result of scientific research.
This review systematizes the results of recent studies on risk factors and pathogenetic links in the development of IR, prospects and existing experience of using these data in clinical practice with an emphasis on assessing the level of melatonin and vitamin D. The issue of timely and reliable laboratory confirmation of IR is relevant not only for endocrinologists, but also for specialists in almost all areas. In clinical use apart from indirect methods of IR-assessment like HOMA-IR, there is an informative test intact proinsulin.
Recently, the increasing attention of researchers is attracted by such factors of the development of IR as vitamin D deficiency and disturbances in chrono- and biorhythms. Today, their role in the pathogenesis of IR can be considered proven, which makes it possible to consider vitamin D and melatonin as therapeutic agents in an integrated approach to the prevention and correction of IR. Statistical analysis of the research results of the “DILA” Medical Laboratory and clinical data provided by the Department of Endocrinology of the O.O. Bogomolets National Medical University also showed an association of vitamin D and melatonin levels with IR.
Thus, a review of scientific sources over the last 5 years clearly demonstrates the growing urgency of the problem of IR and metabolic syndrome, the need to reconsider their management from assessing traditional etiopathogenetic factors (alimentary) to taking into account the maximum spectrum of genetic aspects and exogenous impacts. An important place among the latter belongs to an objective assessment of the vitamin D and melatonin levels for adequate pharmacological correction.

Author Biographies

M.I. Bobryk, O.O. Bogomolets National Medical University; “DILA” Medical Laboratory, Kyiv

PhD, associate professor, Endocrinology Department, member of the European Society of Endocrinology;
Scientific consultant

T.M. Tutchenko, SI “O.M. Lukyanova IPOG of the NAMS of Ukraine”; “DILA” Medical Laboratory, Kyiv

PhD, senior researcher, Endocrine Gynecology Department, Department of Reproductive Health of SSI “CIMT of the NAS of Ukraine”;
Scientific consultant

I.V. Sidorova, “DILA” Medical Laboratory, Kyiv

Medical director

O.A. Burka, O.O. Bogomolets National Medical University; “DILA” Medical Laboratory, Kyiv

PhD, associate professor, Obstetrics and Gynaecology Department No. 1;
Scientific consultant

O.I. Krotyk, Clinic of reproductive technology, Ukrainian State Institute of Reproductology, P.L. Shupyk National Healthcare University of Ukraine, Kyiv

Head of Department of family planning and ART with cabinet of endocrine gynecology

A.V. Serbeniuk, Clinic of reproductive technology, Ukrainian State Institute of Reproductology, P.L. Shupyk National Healthcare University of Ukraine, Kyiv

PhD, assistant, Department of Obstetrics, Gynecology and Reproductology; obstetrician-gynecologist

References

  1. World Health Organization. “The top 10 causes of death.” Available from: [https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death], accessed Dec. 02, 2021.
  2. Centers for Disease Control and Prevention. “FastStats – Leading Causes of Death.” Available from: [https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm], accessed Dec. 02, 2021.
  3. Nsiah, K., Shang, V.O., Boateng, K.A., Mensah, F. “Prevalence of metabolic syndrome in type 2 diabetes mellitus patients.” Int J Appl Basic Med Res 5.2 (2015): 133. DOI: 10.4103/2229-516X.157170
  4. Gathirua-Mwangi, W.G., Monahan, P.O., Murage, M.J., Zhang, J. “Metabolic syndrome and total cancer mortality in the Third National Health and Nutrition Examination Survey.” Cancer Causes Control 28.2 (2017): 127–36. DOI: 10.1007/S10552-016-0843-1
  5. Tune, J.D., Goodwill, A.G., Sassoon, D.J., Mather, K.J. “Cardiovascular consequences of metabolic syndrome.” Transl Res 183 (2017): 57–70. DOI: 10.1016/J.TRSL.2017.01.001
  6. Albitar, O., Ballouze, R., Ooi, J.P., Sheikh Ghadzi, S.M. “Risk factors for mortality among COVID-19 patients.” Diabetes Res Clin Pract 166 (2020): 108293. DOI: 10.1016/J.DIABRES.2020.108293
  7. Marhl, M., Grubelnik, V., Magdič, M., Markovič, R. “Diabetes and metabolic syndrome as risk factors for COVID-19.” Diabetes Metab Syndr Clin Res Rev 14.4 (2020): 671–7. DOI: 10.1016/J.DSX.2020.05.013
  8. Martinez-Ferran, M., de la Guía-Galipienso, F., Sanchis-Gomar, F., Pareja-Galeano, H. “Metabolic Impacts of Confinement during the COVID-19 Pandemic Due to Modified Diet and Physical Activity Habits.” Nutr 12.6 (2020): 1549. DOI: 10.3390/NU12061549
  9. Alberti, K.G.M.M., et al. “Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity.” Circulation 120.16 (2009): 1640–5. DOI: 10.1161/CIRCULATIONAHA.109.192644
  10. Zimmet, P., Magliano, D., Matsuzawa, Y., et al. “The Metabolic Syndrome: A Global Public Health Problem and A New Definition.” J Atheroscler Thromb 12.6 (2005): 295–300. DOI: 10.5551/JAT.12.295
  11. Go, A.S., et al. “Executive summary: heart disease and stroke statistics – 2013 update: a report from the American Heart Association.” Circulation 127.1 (2013): 143–52. DOI: 10.1161/CIR.0B013E318282AB8F
  12. Alexander, C.M., Landsman, P.B., Teutsch, S.M., Haffner, S.M. “NCEP-Defined Metabolic Syndrome, Diabetes, and Prevalence of Coronary Heart Disease Among NHANES III Participants Age 50 Years and Older.” Diabetes 52.5 (2003): 1210–4. DOI: 10.2337/DIABETES.52.5.1210
  13. Eckel, R.H., Grundy, S.M., Zimmet, P.Z. “The metabolic syndrome.” Lancet (London, England) 365.9468 (2005): 1415–28. DOI: 10.1016/S0140-6736(05)66378-7
  14. Desroches, S., Lamarche, B. “The evolving definitions and increasing prevalence of the metabolic syndrome.” Appl Physiol Nutr Metab 32.1 (2007): 23–32. DOI: 10.1139/h06-095
  15. Roomi, M.A., Mohammadnezhad, M. “Prevalence of Metabolic Syndrome Among Apparently Healthy Workforce.” J Ayub Med Coll Abbottabad 31.2 (2019): 252–4. Available from: [https://europepmc.org/article/med/31094127], accessed Dec. 03, 2021.
  16. Fazleen, N.E., Whittaker, M., Mamun, A. “Risk of metabolic syndrome in adolescents with polycystic ovarian syndrome: A systematic review and meta-analysis.” Diabetes Metab Syndr Clin Res Rev 12.6 (2018): 1083–90. DOI: 10.1016/J.DSX.2018.03.014
  17. Nolan, P.B., Carrick-Ranson, G., Stinear, J.W., et al. “Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis.” Prev Med Reports 7 (2017): 211–5. DOI: 10.1016/J.PMEDR.2017.07.004
  18. Petersen, M.C., Shulman, G.I. “Mechanisms of insulin action and insulin resistance.” Physiol Rev 98.4 (2018): 2133–223. DOI: 10.1152/physrev.00063.2017
  19. Wang, C.H., Wei, Y.H. “Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes.” J Biomed Sci 24.1 (2017): 1–11. DOI: 10.1186/s12929-017-0375-3
  20. Pinti, M.V., Fink, G.K., Hathaway, Q.A., et al. “Mitochondrial dysfunction in type 2 diabetes mellitus: An organ-based analysis.” Am J Physiol Endocrinol Metab 316.2 (2019): E268–85. DOI: 10.1152/ajpendo.00314.2018
  21. Yaribeygi, H., Farrokhi, F.R., Butler, A.E, Sahebkar, A. “Insulin resistance: Review of the underlying molecular mechanisms.” J Cell Physiol 234.6 (2019): 8152–61. DOI: 10.1002/JCP.27603
  22. Chernyaeva, A.О., et al. “State of glucose homeostasis in women with type 2 diabetes mellitus with hyperuricemia.” Problems of endocrine pathology 4 (2019): 103–9. DOI: 10.21856/j-PEP.2019.4.14
  23. Fonseca, V.A. “Defining and Characterizing the Progression of Type 2 Diabetes.” Diabetes Care 32.2 (2009): S151–6. DOI: 10.2337/DC09-S301
  24. Nguyen, T.T., Ta, Q.T.H., Nguyen, T.K.O., et al. “Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease.” Int J Mol Sci 21.9 (2020). DOI: 10.3390/IJMS21093165
  25. Hendrickx, J.O., et al. “Serum Corticosterone and Insulin Resistance as Early Biomarkers in the hAPP23 Overexpressing Mouse Model of Alzheimer’s Disease.” Int J Mol Sci 22.13 (2021). DOI: 10.3390/IJMS22136656
  26. Ferreira, L.S.S., Fernandes, C.S., Vieira, M.N.N., De Felice, F.G. “Insulin resistance in Alzheimer’s disease.” Front Neurosci 12 (2018): 830. DOI: 10.3389/fnins.2018.00830
  27. Holt, R.I.G., Hanley, N.A. “Essential Endocrinology and Diabetes.” Available from: [https://books. google.com.ua/books?hl=uk&lr=&id=EjAhEAAAQBAJ&oi=fnd&pg=PP7 &dq=Essential+endocrinology+and+diabetes&ots=zuDBoR3WyR&sig= _y_q97GxC0fwUhu7GFvIzN87yAM&redir_esc=y#v=onepage&q=Essential endocrinology and diabetes&f=false], accessed Dec. 03, 2021.
  28. Belfiore, A., et al. “Insulin Receptor Isoforms in Physiology and Disease: An Updated View.” Endocr Rev 38.5 (2017): 379–431. DOI: 10.1210/ER.2017-00073
  29. Carson, C., Lawson, H.A. “Epigenetics of metabolic syndrome.” Physiol Genomics 50.11 (2018): 947–55. DOI: 10.1152/physiolgenomics.00072.2018
  30. Stepto, N.K., et al. “Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp.” Hum Reprod 28.3 (2013): 777–84. DOI: 10.1093/humrep/des463
  31. Karelis, A.D., St-Pierre, D.H., Conus, F., et al. “Metabolic and Body Composition Factors in Subgroups of Obesity: What Do We Know?” J Clin Endocrinol Metab 89.6 (2004): 2569–75. DOI: 10.1210/JC.2004-0165
  32. Di Lorenzo, N., et al. “Clinical practice guidelines of the European Association for Endoscopic Surgery (EAES) on bariatric surgery: update 2020 endorsed by IFSO-EC, EASO and ESPCOP.” Surg Endosc 34.6 (2020): 2332–58. DOI: 10.1007/s00464-020-07555-y
  33. Borzan, V., et al. “Risk of Insulin Resistance and Metabolic Syndrome in Women with Hyperandrogenemia: A Comparison between PCOS Phenotypes and Beyond.” J Clin Med 10.4 (2021): 829. DOI: 10.3390/JCM10040829
  34. Condorelli, R.A., et al. “Androgen excess and metabolic disorders in women with PCOS: beyond the body mass index.” J Endocrinol Invest 41.4 (2018): 383–8. DOI: 10.1007/s40618-017-0762-3
  35. Pan, A., et al. “Bidirectional association between depression and metabolic syndrome: A systematic review and meta-analysis of epidemiological studies.” Diabetes Care 35.5 (2012): 1171–80. DOI: 10.2337/dc11-2055
  36. Dimopoulou, C., Goulis, D.G., Corona, G., Maggi, M. “The complex association between metabolic syndrome and male hypogonadism.” Metabolism 86 (2018): 61–8. DOI: 10.1016/J.METABOL.2018.03.024
  37. Singh, B., Saxena, A. “Surrogate markers of insulin resistance: A review.” World J Diabetes 1.2 (2010): 36–47. DOI: 10.4239/wjd.v1.i2.36
  38. Pfützner, P.A., et al. “IRIS II Study: Intact Proinsulin Is Confirmed as a Highly Specific Indicator for Insulin Resistance in a Large Cross-Sectional Study Design.” Diabetes Technol Ther 7.3 (2005): 478–86. DOI: 10.1089/DIA.2005.7.478
  39. Pfützner, A., Pfützner, A.H., Kann, P.H., Burgard, G. “Clinical and Laboratory Evaluation of a New Specific Point-of-Care Test for Intact Proinsulin.” J Diabetes Sci Technol 11.2 (2017): 278–83. DOI: 10.1177/1932296816663745
  40. Pfützner, A., et al. “Fasting Intact Proinsulin Is a Highly Specific Predictor of Insulin Resistance in Type 2 Diabetes.” Diabetes Care 27.3 (2004): 682–7. DOI: 10.2337/DIACARE.27.3.682
  41. Røder, M.E. “Hyperproinsulinemia in obesity and in type 2 diabetes and its relation to cardiovascular disease.” Expert Rev Endocrinol Metab 12.4 (2017): 227–39. DOI: 10.1080/17446651.2017.1331735
  42. Tokarz, V.L., MacDonald, P.E., Klip, A. “The cell biology of systemic insulin function.” J Cell Biol 217.7 (2018): 2273–89. DOI: 10.1083/JCB.201802095
  43. Shorakae, S., et al. “Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS.” Clin Endocrinol (Oxf) 89.5 (2018): 628–33. DOI: 10.1111/cen.13808
  44. Saad, M.J.A., Santos, A., Prada, P.O. “Linking gut microbiota and inflammation to obesity and insulin resistance.” Physiology 31.4 (2016): 283–93. DOI: 10.1152/physiol.00041.2015
  45. Zatterale, F., et al. “Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes.” Front Physiol 10 (2020): 1607. DOI: 10.3389/fphys.2019.01607
  46. Kitade, H., Chen, G., Ni, Y., Ota, T. “Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments.” Nutr 9.4 (2017): 387. DOI: 10.3390/NU9040387
  47. Sassi, F., Tamone, C., D’amelio, P. “Vitamin D: Nutrient, Hormone, and Immunomodulator.” Nutr 10.11 (2018): 1656. DOI: 10.3390/NU10111656
  48. Kabadi, S.M., Lee, B.K., Liu, L. “Joint Effects of Obesity and Vitamin D Insufficiency on Insulin Resistance and Type 2 Diabetes.” Diabetes Care 35.10 (2012): 2048–54. DOI: 10.2337/DC12-0235
  49. Parker, J., et al. “Levels of vitamin D and cardiometabolic disorders: Systematic review and meta-analysis.” Maturitas 65.3 (2010): 225–36. DOI: 10.1016/j.maturitas.2009.12.013
  50. Hajhashemy, Z., Shahdadian, F., Moslemi, E., et al. “Serum vitamin D levels in relation to metabolic syndrome: A systematic review and dose-response meta-analysis of epidemiologic studies.” Obes Rev 22.7 (2021): e13223. DOI: 10.1111/OBR.13223
  51. Boucher, B.J. “Why do so many trials of vitamin D supplementation fail?” Endocr Connect 9.9 (2020): R195. DOI: 10.1530/EC-20-0274
  52. Ferreira, P.P., et al. “Vitamin D supplementation improves the metabolic syndrome risk profile in postmenopausal women.” Climacteric 23.1 (2020): 24–31. DOI: 10.1080/13697137.2019.1611761
  53. Pramono, A., Jocken, J.W.E., Blaak, E.E. “Vitamin D deficiency in the aetiology of obesity-related insulin resistance.” Diabetes Metab Res Rev 35.5 (2019): e3146. DOI: 10.1002/DMRR.3146
  54. Roizen, J.D., et al. “Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D.” J Bone Miner Res 34.6 (2019): 1068–73. DOI: 10.1002/JBMR.3686
  55. Abbas, M.A. “Physiological functions of Vitamin D in adipose tissue.” J Steroid Biochem Mol Biol 165 (2017): 369–81. DOI: 10.1016/J.JSBMB.2016.08.004
  56. Krul-Poel, Y.H.M., et al. “Vitamin D and metabolic disturbances in polycystic ovary syndrome (PCOS): A cross-sectional study.” PLoS One 13.12 (2018): e0204748. DOI: 10.1371/JOURNAL.PONE.0204748
  57. Komisarenko, Y.I., Bobryk, M.I. “Vitamin D Deficiency and Immune Disorders in Combined Endocrine Pathology.” Front Endocrinol 9 (2018): 600. DOI: 10.3389/fendo.2018.00600
  58. Niroomand, M., Fotouhi, A., Irannejad, N., Hosseinpanah, F. “Does high-dose vitamin D supplementation impact insulin resistance and risk of development of diabetes in patients with pre-diabetes? A double-blind randomized clinical trial.” Diabetes Res Clin Pract 148 (2019): 1–9. DOI: 10.1016/J.DIABRES.2018.12.008
  59. Wimalawansa, S.J. “Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome.” J Steroid Biochem Mol Biol 175 (2018): 177–89. DOI: 10.1016/J.JSBMB.2016.09.017
  60. Totonchi, H., Rezaei, R., Noori, S., et al. “Vitamin D Receptor Gene Polymorphisms and the Risk of Metabolic Syndrome (MetS): A Meta-Analysis.” Endocrine Metab Immune Disord Drug Targets 21.5 (2020): 943–55. DOI: 10.2174/1871530320666200805101302
  61. Liang, F., et al. “A meta-analysis of the relationship between vitamin D receptor gene ApaI polymorphisms and polycystic ovary syndrome.” Adv Clin Exp Med 28.2 (2019): 255–62. DOI: 10.17219/ACEM/85882
  62. Vulcan, T., Filip, G.A., Lenghel, L.M., et al. “Polymorphisms of Vitamin D Receptor and the Effect on Metabolic and Endocrine Abnormalities in Polycystic Ovary Syndrome: A Review.” Horm Metab Res 53.10 (2021): 645–53. DOI: 10.1055/a-1587-9336
  63. Cooper, C.B., Neufeld, E.V., Dolezal, B.A., Martin, J.L. “Sleep deprivation and obesity in adults: a brief narrative review.” BMJ Open Sport Exerc Med 4.1 (2018): e000392. DOI: 10.1136/BMJSEM-2018-000392
  64. Cardinali, D.P. “Melatonin as a Medicament for the 24/7 Society: Metabolic Syndrome.” Ma Vie en Noir (2016): 185–213. DOI: 10.1007/978-3-319-41679-3_12
  65. Carpentieri, A., Díaz De Barboza, G., Areco, V., et al. “New perspectives in melatonin uses.” Pharmacol Res 65.4 (2012): 437–44. DOI: 10.1016/J.PHRS.2012.01.003
  66. Halpern, B., et al. “Melatonin increases brown adipose tissue volume and activity in patients with melatonin deficiency: A proof-of-concept study.” Diabetes 68.5 (2019): 947–52. DOI: 10.2337/db18-0956
  67. Yu, H.-S., Reiter, R.J. “Melatonin: Biosynthesis, Physiological Effects, and Clinical Applications.” Available from: [https://books.google.com.ua/books?hl=uk&lr=&id=LJEBEAAAQBAJ&oi=fnd&pg=PP11&dq=melatonin+physiology&ots=Maw0Md0ecm&sig=AIo_PhZfKDt1bqiE_Asza_gGZ04&redir_esc=y#v=onepage&q=melatonin physiology&f=false], accessed Dec. 05, 2021.
  68. Aulinas, A. “Physiology of the Pineal Gland and Melatonin.” Endotext (Dec. 2019). Available from: [https://www.ncbi.nlm.nih.gov/sites/books/NBK550972/], accessed: Dec. 05, 2021.
  69. Socaciu, A.I., et al. “Melatonin, an ubiquitous metabolic regulator: functions, mechanisms and effects on circadian disruption and degenerative diseases.” Rev Endocr Metab Disord 21.4 (2020): 465–78. DOI: 10.1007/S11154-020-09570-9
  70. NaveenKumar, S.K., et al. “Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system.” J Pineal Res 69.3 (2020): e12676. DOI: 10.1111/JPI.12676
  71. Lynch, H.J., Wurtman, R.J. “Melatonin Levels as they Relate to Reproductive Physiology.” Pineal Gland 123 (2020): 103–23. DOI: 10.1201/9780429280931-5
  72. Pevet, P., Klosen, P., Felder-Schmittbuhl, M.P. “The hormone melatonin: Animal studies.” Best Pract Res Clin Endocrinol Metab 31.6 (2017): 547–59. DOI: 10.1016/J.BEEM.2017.10.010
  73. Owino, S., et al. “Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity.” J Pineal Res 64.3 (2018): e12462. DOI: 10.1111/JPI.12462
  74. Tuomi, T., et al. “Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes.” Cell Metab 23.6 (2016): 1067–77. DOI: 10.1016/J.CMET.2016.04.009
  75. Karamitri, A., Renault, N., Clement, N., et al. “Minireview: Toward the Establishment of a Link between Melatonin and Glucose Homeostasis: Association of Melatonin MT2 Receptor Variants with Type 2 Diabetes.” Mol Endocrinol 27.8 (2013): 1217–33. DOI: 10.1210/ME.2013-1101
  76. Peschke, E., Bähr, I., Mühlbauer, E. “Melatonin and Pancreatic Islets: Interrelationships between Melatonin, Insulin and Glucagon.” Int J Mol Sci 14.4 (2013): 6981–7015. DOI: 10.3390/IJMS14046981
  77. Mayo, J.C., et al. “Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose?” Mol 23.8 (2018): 1999. DOI: 10.3390/MOLECULES23081999
  78. Ramracheya, R.D., et al. “Function and expression of melatonin receptors on human pancreatic islets.” J Pineal Res 44.3 (2008): 273–9. DOI: 10.1111/J.1600-079X.2007.00523.X
  79. Lo, C.C., Lin, S.H., Chang, J.S., Chien, Y.W. “Effects of Melatonin on Glucose Homeostasis, Antioxidant Ability, and Adipokine Secretion in ICR Mice with NA/STZ-Induced Hyperglycemia.” Nutr 9.11 (2017): 1187. DOI: 10.3390/NU9111187
  80. de Farias, T.D.S.M., et al. “Melatonin Supplementation Attenuates the Pro-Inflammatory Adipokines Expression in Visceral Fat from Obese Mice Induced by A High-Fat Diet.” Cells 8.9 (2019): 1041. DOI: 10.3390/CELLS8091041
  81. Stenvers, D.J., Scheer, F.A.J.L., Schrauwen, P., et al. “Circadian clocks and insulin resistance.” Nat Rev Endocrinol 15.2 (2018): 75–89. DOI: 10.1038/s41574-018-0122-1
  82. Garaulet, M., Qian, J., Florez, J.C., et al. “Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy.” Trends Endocrinol Metab 31.3 (2020): 192–204. DOI: 10.1016/J.TEM.2019.11.011
  83. Mok, J.X., Ooi, J.H., Ng, K.Y., et al. “A new prospective on the role of melatonin in diabetes and its complications.” Horm Mol Biol Clin Investig 40.1 (2019). DOI: 10.1515/hmbci-2019-0036
  84. Boutin, J.A., Jockers, R. “Melatonin controversies, an update.” J Pineal Res 70.2 (2021): e12702. DOI: 10.1111/JPI.12702
  85. Andersen, L.P.H., Gögenur, I., Rosenberg, J., Reiter, R.J. “The Safety of Melatonin in Humans.” Clin Drug Investig 36.3 (2015): 169–75. DOI: 10.1007/S40261-015-0368-5
  86. Xia, Q., et al. “Association between the Melatonin Receptor 1B Gene Polymorphism on the Risk of Type 2 Diabetes, Impaired Glucose Regulation: A Meta-Analysis.” PLoS One 7.11 (2012): e50107. DOI: 10.1371/JOURNAL.PONE.0050107
  87. Shen, L.L., Jin, Y. “Effects of MTNR1B genetic variants on the risk of type 2 diabetes mellitus: A meta-analysis.” Mol Genet Genomic Med 7.5 (2019): e611. DOI: 10.1002/MGG3.611

Published

2021-12-29

How to Cite

Bobryk, M., Tutchenko, T., Sidorova, I., Burka, O., Krotyk, O., & Serbeniuk, A. (2021). Insulin resistance in the ХХІ century: multimodal approach to assessing causes and effective correction. REPRODUCTIVE ENDOCRINOLOGY, (62), 97–103. https://doi.org/10.18370/2309-4117.2021.62.97-103

Issue

Section

Endocrinology