Epidemiological and clinical trends of sexually transmitted infections. Literature review
DOI:
https://doi.org/10.18370/2309-4117.2021.58.55-62Keywords:
chlamydial infection, gonorrhea, trichomoniasis, peak incidence, polymerase chain reaction, culture methods, microscopyAbstract
This article presents modern data on epidemiological trends, pathogenesis, and mechanisms of persistence and acquisition of antibiotic resistance of the most common sexually transmitted infections (STIs): chlamydial infection, gonorrhea, trichomoniasis. Data on the frequency of chlamydial infection, gonorrhea, trichomoniasis detection in the DILA medical laboratory in the period from 2018–2020 are also presented.
Analysis of epidemiological and microbiological studies indicates a significant increase in the STIs incidence in countries with high economic development and the need for constant revision of diagnostic and treatment approaches, based on new data on the pathogens physiology, mechanisms and levels of antibiotic resistance, possibilities of laboratory diagnostics. Analysis of the DILA data on the chlamydial infection, gonorrhea, trichomoniasis detection is coinciding with the world trends in the increase of their prevalence. At the same time, the analysis of the DILA data demonstrated an interesting clinical phenomenon as a presence of 2 STIs peaks in women: the first at 21–25 years and the second at 51–55 years old.
Clinical manifestations of STIs are increasingly losing their typical features today. This indicates the need for a laboratory search for all common STIs in the region. Knowledge of the etiological factor of the inflammatory process allows choosing the correct antibiotic therapy and preventing the further development of antibiotic resistance. This article presents data on the various methods of STIs laboratory tests. Regular visits of women for cervical cancer screening are a good opportunity to screen for STIs. The ability to detect STIs in biomaterial in liquid cytology makes this option more accessible.
Thus, since vaccines against common bacterial and protozoa STIs pathogens have not yet been developed, the promotion of hygiene of sexual behavior and timely detection of infected persons during examination or screening with subsequent etiopathogenetic treatment are the basis of the STIs control systems and their consequences prevention.
References
- World Health Organization. Sexually transmitted and reproductive tract infections. WHO (2020). Available from: [http://www.who.int/reproductivehealth/publications/rtis/policy/en], last accessed May 1, 2021.
- USA National Prevention Information Network. Sexually Transmitted Infections National Strategic Plan for the United States: 2021–2025. Available from: [https://npin.cdc.gov/publication/sexually-transmitted-infections-national-strategic-plan-united-states-2021–2025], last accessed April 13, 2021.
- World Health Organization. Sexually transmitted and other reproductive tract infections: a guide to essential practice. Geneva. WHO (2005).
- Di Pietro, M., Filardo, S., Romano, S., Sessa, R. “Chlamydia trachomatis and chlamydia pneumoniae interaction with the host: Latest advances and future prospective.” Microorganisms 7 (2019): 140. DOI: 10.3390/microorganisms7050140
- Geisler, W.M. “Duration of untreated, uncomplicated chlamydia trachomatis genital infection and factors associated with chlamydia resolution: A review of human studies.” J Infect Dis 201 (2010). DOI: 10.1086/652402
- Omsland, A., Sixt, B.S., Horn, M., Hackstadt, T. “Chlamydial metabolism revisited: Interspecies metabolic variability and developmental stage-specific physiologic activities.” FEMS Microbiol Rev 38 (2014): 779–801. DOI: 10.1111/1574-6976.12059
- Elwell, C., Mirrashidi, K., Engel, J. “Chlamydia cell biology and pathogenesis.” Nat Rev Microbiol 14 (2016): 385–400. DOI: 10.1038/nrmicro.2016.30
- Hybiske, K., Stephens, R.S. “Mechanisms of host cell exit by the intracellular bacterium Chlamydia.” Proc Natl Acad Sci USA 104 (2007): 11430–5. DOI: 10.1073/pnas.0703218104
- Peeling, R.W., Brunham, R.C. “Chlamydiae as Pathogens: New Species and New Issues.” Emerg Infect Dis 2 (1996): 307–19. DOI: 10.3201/eid0204.960406
- Rodel, J., Groh, A., Vogelsang, H., et al. “Beta interferon is produced by Chlamydia trachomatis-infected fibroblast-like synoviocytes and inhibits gamma interferon-induced HLA-DR expression.” Infect Immun 66 (1998): 4491–5. DOI: 10.1128/iai.66.9.4491-4495.1998
- Chen, A.L., Johnson, K.A., Lee, J.K., et al. “CPAF: A Chlamydial Protease in Search of an Authentic Substrate.” PLoS Pathog 8 (2012): e1002842. DOI: 10.1371/journal.ppat.1002842
- Al-Zeer, M.A., Xavier, A., Abu Lubad, M., et al. “Chlamydia trachomatis Prevents Apoptosis Via Activation of PDPK1-MYC and Enhanced Mitochondrial Binding of Hexokinase II.” EBioMedicine 23 (2017): 100–10. DOI: 10.1016/j.ebiom.2017.08.005
- Fan, T., Lu, H., Hu, H., et al. “Inhibition of apoptosis in chlamydia-infected cells: Blockade of mitochondrial cytochrome c release and caspase activation.” J Exp Med 187 (1998): 487–96. DOI: 10.1084/jem.187.4.487
- Gao, L.Y., Kwaik, Y.A. “The modulation of host cell apoptosis by intracellular bacterial pathogens.” Trends Microbiol 8 (2000): 306–13. DOI: 10.1016/S0966-842X(00)01784-4
- Akers, J.C., Tan, M. “Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis.” J Bacteriol 188 (2006): 4236–43. DOI: 10.1128/JB.01660-05
- Leonhardt, R.M., Lee, S.J., Kavathas, P.B., Cresswell, P. “Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis.” Infect Immun 75 (2007): 5105–17. DOI: 10.1128/IAI.00668-07.
- Brunham, R.C., Rey-Ladino, J. “Immunology of Chlamydia infection: Implications for a Chlamydia trachomatis vaccine.” Nat Rev Immunol 5 (2005): 149–61. DOI: 10.1038/nri1551
- Bavoil, P.M. “What’s in a word: the use, misuse, and abuse of the word ‘persistence’ in Chlamydia biology.” Front Cell Infect Microbiol 4 (2014): 27. DOI: 10.3389/fcimb.2014.00027
- Wyrick, P.B. “Chlamydia trachomatis Persistence In Vitro: An Overview.” J Infect Dis 201 (2010): 88–95. DOI: 10.1086/652394
- Eleutério, J., Teles, R.A., Linhares, I.M., et al. “Interferon-gamma gene polymorphism influences the frequency of a Chlamydia trachomatis cervical infection in young women.” Int J STD AIDS 26 (2015): 960–4. DOI: 10.1177/0956462414563627
- Ziklo, N., Huston, W.M., Hocking, J.S., Timms, P. “Chlamydia trachomatis Genital Tract Infections: When Host Immune Response and the Microbiome Collide.” Trends Microbiol 24 (2016): 750–65. DOI: 10.1016/j.tim.2016.05.007
- McClarty, G., Caldwell, H.D., Nelson, D.E. “Chlamydial interferon gamma immune evasion influences infection tropism.” Curr Opin Microbiol 10 (2007): 47–51. DOI: 10.1016/j.mib.2006.12.003
- Aiyar, A., Quayle, A.J., Buckner, L.R., et al. “Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: Role of vaginal co-infections.” Front Cell Infect Microbiol 4 (2014). DOI: 10.3389/fcimb.2014.00072
- Nasioudis, D., Linhares, I., Ledger, W., Witkin, S. “Bacterial vaginosis: a critical analysis of current knowledge.” BJOG An Int J Obstet Gynaecol 124 (2017): 61–9. DOI: 10.1111/1471-0528.14209
- Sasaki-Imamura, T., Yoshida, Y., Suwabe, K., et al. “Molecular basis of indole production catalyzed by tryptophanase in the genus Prevotella.” FEMS Microbiol Lett 322 (2011): 51–9. DOI: 10.1111/j.1574-6968.2011.02329.x
- Sziller, I., Babula, O., Ujházy, A., et al. “Chlamydia trachomatis infection, Fallopian tube damage and a mannose-binding lectin codon 54 gene polymorphism.” Hum Reprod 22 (2007): 1861–5. DOI: 10.1093/humrep/dem107
- Raulston, J.E. “Response of Chlamydia trachomatis serovar E to iron restriction vitro and evidence for iron-regulated chlamydial proteins.” Infect Immun 65 (1997): 4539–47. DOI: 10.1128/iai.65.11.4539-4547.1997
- LaVerda, D., Kalayoglu, M.V., Byrne, G.I. “Chlamydial heat shock proteins and disease pathology: New paradigms for old problems?” Infect Dis Obstet Gynecol 7 (1999): 64–71. DOI: 10.1002/(SICI)1098-0997(1999)7:1/2<64::AID-IDOG13>3.0.CO;2-I
- Henderson, B., Fares, M.A., Lund, P.A. “Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions.” Biol Rev 88 (2013): 955–87. DOI: 10.1111/brv.12037
- Rodgers, A.K., Budrys, N.M., Gong, S., et al. “Genome-wide identification of Chlamydia trachomatis antigens associated with tubal factor infertility.” Fertil Steril 96 (2011): 715–21. DOI: 10.1016/j.fertnstert.2011.06.021
- European Centre for Disease Prevention and Control. Annual epidemiological report 2018 – chlamydia. Available from: [https://www.ecdc.europa.eu/sites/default/files/documents/AER-for-2018-STI-chlamydia.pdf], last accessed May 07, 2021.
- Huai, P., Li, F., Chu, T., et al. “Prevalence of genital Chlamydia trachomatis infection in the general population: A meta-analysis.” BMC Infect Dis 20 (2020): 589. DOI: 10.1186/s12879-020-05307-w
- Manavi, K. “A review on infection with Chlamydia trachomatis.” Best Pract Res Clin Obstet Gynaecol 20 (2006): 941–51. DOI: 10.1016/j.bpobgyn.2006.06.003
- Workowski, K.A., Bolan, G.A. “Centers for Disease Control and Prevention, Sexually transmitted diseases treatment guidelines, 2015.” MMWR Recomm Reports Morb Mortal Wkly Report Recomm Reports 64 (2015): 1–137. Available from: [http://www. ncbi.nlm.nih.gov/pubmed/26042815], last accessed May 07, 2021.
- Sherrard, J., Wilson, J., Donders, G., et al. “European (IUSTI/WHO) International Union against sexually transmitted infections (IUSTI) World Health Organisation (WHO) guideline on the management of vaginal discharge.” Int J STD AIDS 29 (2018): 1258–72. DOI: 10.1177/0956462418785451
- Caruso, G., Giammanco, A., Virruso, R., Fasciana, T. “Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections.” Int J Environ Res Public Health 18 (2021): 1038. DOI: 10.3390/ijerph18031038
- Lovett, A., Duncan, J.A. “Human Immune Responses and the Natural History of Neisseria gonorrhoeae Infection.” Front Immunol 9 (2019): 3187. DOI: 10.3389/fimmu.2018.03187
- Unemo, M., Seifert, H.S., Hook, E.W., et al. “Gonorrhoea.” Nat Rev Dis Prim 5 (2019): 1–23. DOI: 10.1038/s41572-019-0128-6
- Ann Melly, M., Gregg, C.R., McGee, Z.A. “Studies of toxicity of neisseria gonorrhoeae for human fallopian tube mucosa.” J Infect Dis 143 (1981): 423–31. DOI: 10.1093/infdis/143.3.423
- Lenz, J.D., Dillard, J.P. “Pathogenesis of neisseria gonorrhoeaeand the host defense in ascending infections of human fallopian tube.” Front Immunol 9 (2018). DOI: 10.3389/fimmu.2018.02710
- Unemo, M., Golparian, D., Eyre, D.W. “Antimicrobial Resistance in Neisseria gonorrhoeae and Treatment of Gonorrhea.” In: Methods Mol Biol. Humana Press Inc. (2019): 37–58. DOI: 10.1007/978-1-4939-9496-0_3
- Wi, T., Lahra, M.M., Ndowa, F., et al. “Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action.” PLOS Med 14 (2017): e1002344. DOI: 10.1371/journal.pmed.1002344
- Kenyon, C., Kenyon, C., Manoharan-Basil, S.S., Van Dijck, C. “Gonococcal resistance can be viewed productively as part of a syndemic of antimicrobial resistance: an ecological analysis of 30 European countries.” Antimicrob Resist Infect Control 9 (2020): 97. DOI: 10.1186/s13756-020-00764-z
- US Centers for Disease Control. Antibiotic Resistance Threats in the United States, 2019. DOI: 10.15620/cdc:82532
- St. Cyr, S., Barbee, L., Workowski, K.A., et al. “Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020.” MMWR Morb Mortal Wkly Rep 69 (2020): 1911–6. DOI: 10.15585/mmwr.mm6950a6
- European Centre for Disease Prevention and Control. Gonorrhoea – Annual Epidemiological Report for 2018. Available from: [https://www.ecdc.europa.eu/en/publications-data/gonorrhoea-annual-epidemiological-report-2018], last accessed May 07, 2021.
- Siracusano, S., Silvestri, T., Casotto, D. “Sexually transmitted diseases: epidemiological and clinical aspects in adults.” Urologia 81 (2014): 200–8. DOI: 10.5301/uro.5000101
- Bamberger, D.M. “Trends in Sexually Transmitted Infections.” Mo Med 117 (2020): 324–7. Available from: [http://www.ncbi.nlm.nih.gov/pubmed/32848268], last accessed Apr 13, 2021.
- Papp, J.R., Schachter, J., Gaydos, C.A., Van Der Pol, B. “Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae – 2014.” MMWR Recomm Reports 63 (2014). Available from: [https://jhu.pure.elsevier.com/en/publications/recommendations-for-the-laboratory-based-detection-of-chlamydia-t-4], last accessed Apr 26, 2021.
- Rein, M.F. “Trichomoniasis.” In: Hunter’s Trop Med Emerg Infect Dis. Elsevier (2020): 731–3. DOI: 10.1016/B978-0-323-55512-8.00100-9
- Mercer, F., Johnson, P.J. “Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses.” Trends Parasitol 34 (2018): 683–93. DOI: 10.1016/j.pt.2018.05.006
- Kissinger, P. “Trichomonas vaginalis: A review of epidemiologic, clinical and treatment issues.” BMC Infect Dis 15 (2015): 307. DOI: 10.1186/s12879-015-1055-0
- Nemati, M., Malla, N., Yadav, M., et al. “Humoral and T cell-mediated immune response against trichomoniasis.” Parasite Immunol 40 (2018): e12510. DOI: 10.1111/pim.12510
- Yang, S., Zhao, W., Wang, H., et al. “Trichomonas vaginalis infection-associated risk of cervical cancer: A meta-analysis.” Eur J Obstet Gynecol Reprod Biol 228 (2018): 166–73. DOI: 10.1016/j.ejogrb.2018.06.031
- Sutton, M., Sternberg, M., Koumans, E.H., et al. “The prevalence of Trichomonas vaginalis infection among reproductive-age women in the United States, 2001–2004.” Clin Infect Dis 45 (2007): 1319–26. DOI: 10.1086/522532
- Kreisel, K.M., Spicknall, I.H., Gargano, J.W., et al. “Sexually Transmitted Infections Among US Women and Men: Prevalence and Incidence Estimates, 2018.” Sex Transm Dis 48 (2021): 208–14. DOI: 10.1097/OLQ.0000000000001355
- Alcaide, M.L., Feaster, D.J., Duan, R., et al. “The incidence of Trichomonas vaginalis infection in women attending nine sexually transmitted diseases clinics in the USA.” Sex Transm Infect 92 (2016): 58–62. DOI: 10.1136/sextrans-2015-052010
- Meites, E., Llata, E., Braxton, J., et al. “Trichomonas vaginalis in selected US sexually transmitted disease clinics: Testing, screening, and prevalence.” Sex Transm Dis 40 (2013): 865–9. DOI: 10.1097/OLQ.0000000000000038
- Stemmer, S.M., Mordechai, E., Adelson, M.E., et al. “Trichomonas vaginalis is most frequently detected in women at the age of peri-/premenopause: an unusual pattern for a sexually transmitted pathogen.” Am J Obstet Gynecol 218 (2018): 328.e1-328.e13. DOI: 10.1016/j.ajog.2017.12.006
- Van Der Pol, B. “Clinical and laboratory testing for trichomonas vaginalis infection.” J Clin Microbiol 54 (2016): 7–12. DOI: 10.1128/JCM.02025-15
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Т.М. Тутченко, О.А. Бурка, І.Ф. Боярчук, А.В. Трампольська, В.В. Явнюк, Л.С. Остроух
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.